Noether Symmetries and Critical Exponents
Symmetry, integrability and geometry: methods and applications, Tome 1 (2005) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that all Lie point symmetries of various classes of nonlinear differential equations involving critical nonlinearities are variational/divergence symmetries.
Keywords: divergence symmetry; critical exponents.
@article{SIGMA_2005_1_a21,
     author = {Yuri Bozhkov},
     title = {Noether {Symmetries} and {Critical} {Exponents}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2005},
     volume = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a21/}
}
TY  - JOUR
AU  - Yuri Bozhkov
TI  - Noether Symmetries and Critical Exponents
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2005
VL  - 1
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a21/
LA  - en
ID  - SIGMA_2005_1_a21
ER  - 
%0 Journal Article
%A Yuri Bozhkov
%T Noether Symmetries and Critical Exponents
%J Symmetry, integrability and geometry: methods and applications
%D 2005
%V 1
%U http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a21/
%G en
%F SIGMA_2005_1_a21
Yuri Bozhkov. Noether Symmetries and Critical Exponents. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a21/

[1] Bluman G. W., Kumei S., Symmetries and differential equations, Springer, New York, 1989 | MR | Zbl

[2] Bratu G., “Sur les équationes intégrales non linéares”, Bull. Soc. Math. de France, 42 (1914), 113–142 | MR | Zbl

[3] Bozhkov Y. D., “Divergence symmetries of semilinear polyharmonic equations involving critical nonlinearities”, J. Differ. Equations, 225:2 (2006), 666–684 | DOI | MR | Zbl

[4] Bozhkov Y. D., Gilli Martins A. C., “On the symmetry group of a differential equation and the Liouville–Gelfand problem”, Rend. Istit. Mat. Univ. Trieste, 34 (2002), 103–120 | MR | Zbl

[5] Bozhkov Y. D., Gilli Martins A. C., “Lie point symmetries and exact solutions of quasilinear differential equations with critical exponents”, Nonlinear Anal., 57:5–6 (2004), 773–793 | DOI | MR

[6] Bozhkov Y. D., Gilli Martins A. C., “Lie point symmetries of the Lane–Emden system”, J. Math. Anal. Appl., 294 (2004), 334–344 | DOI | MR | Zbl

[7] Clément P., de Figueiredo D. G., Mitidieri E., “Quasilinear elliptic equations with critical exponents”, Topol. Methods Nonlinear Anal., 7 (1996), 133–164 | MR

[8] Gelfand I. M., “Some problems in the theory of quasilinear equations”, Amer. Math. Soc. Transl., 29 (1963), 295–381 | MR

[9] Gidas B., Spruck J., “Global and local behaviour of positive solutions of nonlinear elliptic equations”, Comm. Pure Appl. Math., 34 (1981), 525–598 | DOI | MR | Zbl

[10] Gidas B., Ni W., Nirenberg L., “Symmetry and related problems via maximum principle”, Comm. Math. Phys., 68 (1979), 209–243 | DOI | MR | Zbl

[11] Hulshof J., van der Vorst R. C. A. M., “Assymptotic behavior of ground states”, Proc. Amer. Math. Soc., 124 (1996), 2423–2431 | DOI | MR | Zbl

[12] Lions P. L., “The concentration-compactness principle in the calculus of variations”, part 1, Rev. Mat. Iberoam., 1 (1985), 145–201 | MR | Zbl

[13] Mitidieri E., “A Relich type identity and applications”, Commun. Partial Differential Equations, 18 (1993), 125–151 | DOI | MR | Zbl

[14] Mitidieri E., Private communication, January, 1995

[15] Mitidieri E., “Nonexistence of positive solutions of semilinear elliptic systems in $\mathbf R^N$”, Differential Integral Equations, 9 (1996), 465–479 | MR | Zbl

[16] Mitidieri E., Private communication, January, 2002

[17] Olver P. J., Applications of Lie groups to differential equations, Springer, New York, 1986 | MR

[18] Serrin J., Zou H., “Non-existence of positive solutions of semilinear elliptic systems”, A tribute to Ilya Bakelman, Discourses in Mathematics and its Applications, 3, Department of Mathematics, Texas A University, College Station Texas, 1994, 55–68 | MR

[19] Serrin J., Zou H., “Non-existence of positive solutions of the Lane–Emden systems”, Differential Integral Equations, 9 (1996), 635–653 | MR | Zbl

[20] Serrin J., Zou H., “Existence of positive solutions of the Lane–Emden systems”, Atti Sem. Mat. Fis. Univ. Modena, 46, suppl. (1998), 369–380 | MR | Zbl

[21] Svirshchevskii S. R., Symmetry of nonlinear elliptic equations with critical values of parameters, Preprint 118, Keldysh Institute of Applied Mathematics, Academy of Sciences USSR, Moscow, 1989

[22] Svirshchevskii S. R., Symmetries of nonlinear polyharmonic equations, Preprint 11, Institute of Mathematical Modelling, Academy of Sciences USSR, Moscow, 1993 | MR

[23] Diferentsial'nye Uravneniya, 29:10 (1993), 1772–1781 (in Russian) | MR