Exact Propagators for Soliton Potentials
Symmetry, integrability and geometry: methods and applications, Tome 1 (2005) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the method of Darboux transformations (or equivalently supersymmetric quantum mechanics) we obtain an explicit expression for the propagator for the one-dimensional Schrödinger equation with a multi-soliton potential.
Keywords: Darboux transformations; SUSY QM; soliton potentials; propagator.
@article{SIGMA_2005_1_a19,
     author = {Andrey M. Pupasov and Boris F. Samsonov},
     title = {Exact {Propagators} for {Soliton} {Potentials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2005},
     volume = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a19/}
}
TY  - JOUR
AU  - Andrey M. Pupasov
AU  - Boris F. Samsonov
TI  - Exact Propagators for Soliton Potentials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2005
VL  - 1
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a19/
LA  - en
ID  - SIGMA_2005_1_a19
ER  - 
%0 Journal Article
%A Andrey M. Pupasov
%A Boris F. Samsonov
%T Exact Propagators for Soliton Potentials
%J Symmetry, integrability and geometry: methods and applications
%D 2005
%V 1
%U http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a19/
%G en
%F SIGMA_2005_1_a19
Andrey M. Pupasov; Boris F. Samsonov. Exact Propagators for Soliton Potentials. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a19/

[1] Witten E., “Dynamical breaking of supersymmetry”, Nucl. Phys. B, 188 (1981), 513–554 | DOI

[2] Samsonov B. F., “SUSY transformations between diagonalizable and non-diagonalizable Hamiltonians”, J. Phys. A: Math. Gen., 38 (2005), L395–L403 ; ; Samsonov B. F., “Spectral singularities of non-Hermitian Hamiltonians and SUSY transformations”, J. Phys. A: Math. Gen., 38 (2005), L571–L579 ; arXiv:quant-ph/0503075arXiv:quant-ph/0507085 | MR | DOI | MR | Zbl

[3] Andrianov A. A., Borisov N. V., Ioffe M. V., Eides M. I., “SUSY QM: new look at the equivalence of quantum systems”, Theor. Math. Phys., 61:1 (1984), 965–972 | DOI | MR

[4] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal. Deuxiéme partie, Gautier-Villar at Fils, Paris, 1889 | Zbl

[5] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer, Berlin, 1991 | MR

[6] Rajaraman R., Solitons and instantons, North Holland Publ., 1982 | MR | Zbl

[7] Jauslin H. R., “Exact propagator and eigenfunctions for multistable models with arbitrarily prescribed $N$ lowest eigenvalues”, J. Phys. A: Math. Gen., 21 (1988), 2337–2350 | DOI | MR | Zbl

[8] Samsonov B. F., Sukumar C. V., Pupasov A. M., “SUSY transformation of the Green function and a trace formula”, J. Phys. A: Math. Gen., 38 (2005), 7557–7565 ; arXiv:quant-ph/0507160 | DOI | MR | Zbl

[9] Bagrov V. G., Samsonov B. F., “Darboux transformations, factorization, supersymmetry in the one-dimensional quantum mechanics”, Theor. Math. Phys., 104:2 (1995), 1051–1060 ; Bagrov V. G., Samsonov B. F., “Darboux transformations in quantum mechanics”, Phys. Part. Nucl., 28 (1997), 374–397 | DOI | MR | Zbl | DOI | MR

[10] Mielnik B., Rosas-Ortiz O., “Factorization: little or great algorithm?”, J. Phys. A: Math. Gen., 43 (2004), 10007–10035 ; Fernandez D. J. C., Fernandez-Garcia N., “Higher-order supersymmetric quantum mechanics”, AIP Conf. Proc., 744, American Institute of Physics, Melville, NY, 2005, 236–273 ; arXiv:quant-ph/0502098 | DOI | MR | Zbl | MR

[11] Crum M., “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford Ser. (2), 6 (1955), 121–127 ; Krein M. G., “On a continual analogue of the Christoffel formula from the theory of orthogonal polynomials”, Dokl. Akad. Nauk SSSR, 113 (1957), 970–973 | DOI | MR | MR | Zbl

[12] Sukumar C. V., “Supersymmetry and potentials with bound states at arbitrary energies and multisolitons configurations”, J. Phys. A: Math. Gen., 19 (1986), 2297–2316 ; Sukumar C. V., “Supersymmetry and potentials with bound states at arbitrary energies”, J. Phys. A: Math. Gen., 20 (1987), 2461–2481 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Cohen-Tannoudji C., Diu B., Laloë F., Mécanique quantique, tome 1, Hermann, Paris, 1977

[14] Man'ko V. I., Chikhachev A. S., “Integrals of motion and exact solutions of the problem of two dispersing delta-wells”, JETP, 86 (1998), 335–343 | DOI