Transverse Evolution Operator for the Gross–Pitaevskii Equation in Semiclassical Approximation
Symmetry, integrability and geometry: methods and applications, Tome 1 (2005)
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Gross–Pitaevskii equation with a local cubic nonlinearity that describes a many-dimensional system in an external field is considered in the framework of the complex WKB–Maslov method. Analytic asymptotic solutions are constructed in semiclassical approximation in a small parameter $\hbar$, $\hbar\to 0$, in the class of functions concentrated in the neighborhood of an unclosed surface associated with the phase curve that describes the evolution of surface vertex. The functions of this class are of the one-soliton form along the direction of the surface normal. The general constructions are illustrated by examples.
Keywords: WKB–Maslov complex germ method; semiclassical asymptotics; Gross–Pitaevskii equation; solitons; symmetry operators.
@article{SIGMA_2005_1_a18,
     author = {Alexey Borisov and Alexander Shapovalov and Andrey Trifonov},
     title = {Transverse {Evolution} {Operator} for the {Gross{\textendash}Pitaevskii} {Equation} in {Semiclassical} {Approximation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2005},
     volume = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a18/}
}
TY  - JOUR
AU  - Alexey Borisov
AU  - Alexander Shapovalov
AU  - Andrey Trifonov
TI  - Transverse Evolution Operator for the Gross–Pitaevskii Equation in Semiclassical Approximation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2005
VL  - 1
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a18/
LA  - en
ID  - SIGMA_2005_1_a18
ER  - 
%0 Journal Article
%A Alexey Borisov
%A Alexander Shapovalov
%A Andrey Trifonov
%T Transverse Evolution Operator for the Gross–Pitaevskii Equation in Semiclassical Approximation
%J Symmetry, integrability and geometry: methods and applications
%D 2005
%V 1
%U http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a18/
%G en
%F SIGMA_2005_1_a18
Alexey Borisov; Alexander Shapovalov; Andrey Trifonov. Transverse Evolution Operator for the Gross–Pitaevskii Equation in Semiclassical Approximation. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a18/

[1] Gross E. P., “Structure of a quantized vortex in boson systems”, Nuovo Cimento, 20:3 (1961), 454–477 | DOI | MR | Zbl

[2] Pitaevskii L. P., “Vortex lines in an imperfect Bose gas”, Zh. Eksper. Teor. Fiz., 40 (1961), 646–651

[3] Plenum, New York, 1984 | MR | Zbl

[4] Soviet Physics JETP, 34 (1972), 62–69 | MR

[5] Hasegawa A., Tappert F., “Transmission of stationary nonlinear optical pulse in dispersive dielectric fibres”, Appl. Phys. Lett., 23 (1973), 171–172 | DOI

[6] Mollenauer L. F., Stolen R. H., Gordon J. P., “Experimental observation of picosecond pulse narrowing and solitons in optical fibres”, Phys. Rev. Lett., 45 (1980), 1095–1098 | DOI

[7] Yuen H. C., Lake B. M., “Nonlinear dynamics of deep-water gravity waves”, Advances in Applied Mechanics, 22 (1982), 67–229 | DOI | MR | Zbl

[8] Dalfovo F., Giorgini S., Pitaevskii L., Stringary S., “Theory of Bose–Einstein condensation in traped gases”, Rev. Mod. Phys., 71:3 (1999), 463–512 | DOI

[9] Zakharov V. E., Synakh V. S., “On the character of a singularity under self-focusing”, Zh. Eksper. Teor. Fiz., 68 (1975), 940–947

[10] Ser. Traslations of Mathematical Monographs, 119, Amer. Math. Soc., Providence, RI, 1993 | MR | MR | Zbl | Zbl

[11] Belov V. V., Trifonov A. Yu., Shapovalov A. V., “The trajectory-coherent approximation and the system of moments for the Hartree type equation”, Int. J. Math. and Math. Sci., 32:6 (2002), 325–370 | DOI | MR | Zbl

[12] Lisok A. L., Trifonov A. Yu., Shapovalov A. V., “The evolution operator of the Hartree-type equation with a quadratic potential”, J. Phys. A.: Math. Gen., 37 (2004), 4535–4556 | DOI | MR | Zbl

[13] Maslov V. P., Complex Markov chains and the Feynman path integral, Nauka, Moscow, 1976 | MR

[14] J. Soviet Math., 11 (1979), 123–195 | DOI | MR | Zbl

[15] J. Soviet Math., 15 (1981), 273–368 | DOI | MR

[16] Maslov V. P., Quantization of thermodynamics and ultrasecondary quantization, Computer Sciences Institute Publ., Moscow, 2001 | MR

[17] Maslov V. P., Shvedov O. Yu., “Quantization in the vicinity of the classical solutions in $N$-particle problem and superfluidity”, Teor. Mat. Fiz., 98:2 (1994), 266–288 | MR | Zbl

[18] Maslov V. P., Shvedov O.Yu., “The complex germ method for the Fock space. I. Asymptotics like wave packets”, Teor. Mat. Fiz., 104:2 (1995), 310–329 | MR | Zbl

[19] Maslov V. P., Shvedov O. Yu., “The complex germ method for the Fock space. II. Asymptotics, corresponding to finite-dimensional isotropic manifolds”, Teor. Mat. Fiz., 104:3 (1995), 479–506 | MR | Zbl

[20] Maslov V. P., Shvedov O. Yu., The complex germ method in multiparticle problems and in quantum field theory, URSS, Moscow, 2000

[21] Maslov V. P., “The canonical operator on the Lagrangian manifold with a complex germ and a regularizer for pseudodifferential operators and difference schemes”, Dokl. Akad. Nauk SSSR, 195:3 (1970), 551–554 | MR | Zbl

[22] The complex WKB method for nonlinear equations. I. Linear theory, Birkhäuser Verlag, Basel–Boston–Berlin, 1994 | MR | Zbl

[23] Mir, Moscow, 1976 | MR | Zbl

[24] Theor. Math. Phys., 92:2 (1992), 843–868 | DOI | MR

[25] Bagrov V. G., Belov V. V., Ternov I. M., “Quasiclassical trajectory-coherent states of a nonrelativistic particle in an arbitrary electromagnetic field”, Teor. Mat. Fiz., 50 (1982), 390–396 | MR

[26] Bagrov V. G., Belov V. V., Ternov I. M., “Quasiclassical trajectory-coherent states of a particle in an arbitrary electromagnetic field”, J. Math. Phys., 24:12 (1983), 2855–2859 | DOI | MR

[27] Bagrov V. G., Belov V. V., Trifonov A. Yu., “Semiclassical trajectory-coherent approximation in quantum mechanics: I. High order corrections to multidimensional time-dependent equations of Schrödinger type”, Ann. Phys. (NY), 246:2 (1996), 231–280 | DOI | MR

[28] Shapovalov A. V., Trifonov A. Yu., “Semiclassical solutions of the nonlinear Schrödinger equation”, J. Nonlinear Math. Phys., 6:2 (1999), 1–12 | DOI | MR

[29] Malkin M. A., Man'ko V. I., Dynamic symmetries and coherent states of quantum systems, Nauka, Moscow, 1979

[30] Popov M. M., “Green functions for Schrödinger equation with quadratic potential”, Problemy Mat. Fiz., 1973, no. 6, 119–125 | Zbl

[31] Dodonov V. V., Malkin I. A., Man'ko V. I., “Integrals of motion, Green functions and coherent states of dynamic systems”, Intern. J. Theor. Phys., 14:1 (1975), 37–54 | DOI | MR

[32] Bang O., Krolikowski W., Wyller J., Rasmussen J. J., Collapse arrest and soliton stabilization in nonlocal nonlinear media, arXiv:nlin.PS/0201036

[33] Shvedov O. Yu., “Semiclasical symmetries”, Ann. Phys., 296 (2002), 51–89 | DOI | MR | Zbl