@article{SIGMA_2005_1_a18,
author = {Alexey Borisov and Alexander Shapovalov and Andrey Trifonov},
title = {Transverse {Evolution} {Operator} for the {Gross{\textendash}Pitaevskii} {Equation} in {Semiclassical} {Approximation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2005},
volume = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a18/}
}
TY - JOUR AU - Alexey Borisov AU - Alexander Shapovalov AU - Andrey Trifonov TI - Transverse Evolution Operator for the Gross–Pitaevskii Equation in Semiclassical Approximation JO - Symmetry, integrability and geometry: methods and applications PY - 2005 VL - 1 UR - http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a18/ LA - en ID - SIGMA_2005_1_a18 ER -
%0 Journal Article %A Alexey Borisov %A Alexander Shapovalov %A Andrey Trifonov %T Transverse Evolution Operator for the Gross–Pitaevskii Equation in Semiclassical Approximation %J Symmetry, integrability and geometry: methods and applications %D 2005 %V 1 %U http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a18/ %G en %F SIGMA_2005_1_a18
Alexey Borisov; Alexander Shapovalov; Andrey Trifonov. Transverse Evolution Operator for the Gross–Pitaevskii Equation in Semiclassical Approximation. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a18/
[1] Gross E. P., “Structure of a quantized vortex in boson systems”, Nuovo Cimento, 20:3 (1961), 454–477 | DOI | MR | Zbl
[2] Pitaevskii L. P., “Vortex lines in an imperfect Bose gas”, Zh. Eksper. Teor. Fiz., 40 (1961), 646–651
[3] Plenum, New York, 1984 | MR | Zbl
[4] Soviet Physics JETP, 34 (1972), 62–69 | MR
[5] Hasegawa A., Tappert F., “Transmission of stationary nonlinear optical pulse in dispersive dielectric fibres”, Appl. Phys. Lett., 23 (1973), 171–172 | DOI
[6] Mollenauer L. F., Stolen R. H., Gordon J. P., “Experimental observation of picosecond pulse narrowing and solitons in optical fibres”, Phys. Rev. Lett., 45 (1980), 1095–1098 | DOI
[7] Yuen H. C., Lake B. M., “Nonlinear dynamics of deep-water gravity waves”, Advances in Applied Mechanics, 22 (1982), 67–229 | DOI | MR | Zbl
[8] Dalfovo F., Giorgini S., Pitaevskii L., Stringary S., “Theory of Bose–Einstein condensation in traped gases”, Rev. Mod. Phys., 71:3 (1999), 463–512 | DOI
[9] Zakharov V. E., Synakh V. S., “On the character of a singularity under self-focusing”, Zh. Eksper. Teor. Fiz., 68 (1975), 940–947
[10] Ser. Traslations of Mathematical Monographs, 119, Amer. Math. Soc., Providence, RI, 1993 | MR | MR | Zbl | Zbl
[11] Belov V. V., Trifonov A. Yu., Shapovalov A. V., “The trajectory-coherent approximation and the system of moments for the Hartree type equation”, Int. J. Math. and Math. Sci., 32:6 (2002), 325–370 | DOI | MR | Zbl
[12] Lisok A. L., Trifonov A. Yu., Shapovalov A. V., “The evolution operator of the Hartree-type equation with a quadratic potential”, J. Phys. A.: Math. Gen., 37 (2004), 4535–4556 | DOI | MR | Zbl
[13] Maslov V. P., Complex Markov chains and the Feynman path integral, Nauka, Moscow, 1976 | MR
[14] J. Soviet Math., 11 (1979), 123–195 | DOI | MR | Zbl
[15] J. Soviet Math., 15 (1981), 273–368 | DOI | MR
[16] Maslov V. P., Quantization of thermodynamics and ultrasecondary quantization, Computer Sciences Institute Publ., Moscow, 2001 | MR
[17] Maslov V. P., Shvedov O. Yu., “Quantization in the vicinity of the classical solutions in $N$-particle problem and superfluidity”, Teor. Mat. Fiz., 98:2 (1994), 266–288 | MR | Zbl
[18] Maslov V. P., Shvedov O.Yu., “The complex germ method for the Fock space. I. Asymptotics like wave packets”, Teor. Mat. Fiz., 104:2 (1995), 310–329 | MR | Zbl
[19] Maslov V. P., Shvedov O. Yu., “The complex germ method for the Fock space. II. Asymptotics, corresponding to finite-dimensional isotropic manifolds”, Teor. Mat. Fiz., 104:3 (1995), 479–506 | MR | Zbl
[20] Maslov V. P., Shvedov O. Yu., The complex germ method in multiparticle problems and in quantum field theory, URSS, Moscow, 2000
[21] Maslov V. P., “The canonical operator on the Lagrangian manifold with a complex germ and a regularizer for pseudodifferential operators and difference schemes”, Dokl. Akad. Nauk SSSR, 195:3 (1970), 551–554 | MR | Zbl
[22] The complex WKB method for nonlinear equations. I. Linear theory, Birkhäuser Verlag, Basel–Boston–Berlin, 1994 | MR | Zbl
[23] Mir, Moscow, 1976 | MR | Zbl
[24] Theor. Math. Phys., 92:2 (1992), 843–868 | DOI | MR
[25] Bagrov V. G., Belov V. V., Ternov I. M., “Quasiclassical trajectory-coherent states of a nonrelativistic particle in an arbitrary electromagnetic field”, Teor. Mat. Fiz., 50 (1982), 390–396 | MR
[26] Bagrov V. G., Belov V. V., Ternov I. M., “Quasiclassical trajectory-coherent states of a particle in an arbitrary electromagnetic field”, J. Math. Phys., 24:12 (1983), 2855–2859 | DOI | MR
[27] Bagrov V. G., Belov V. V., Trifonov A. Yu., “Semiclassical trajectory-coherent approximation in quantum mechanics: I. High order corrections to multidimensional time-dependent equations of Schrödinger type”, Ann. Phys. (NY), 246:2 (1996), 231–280 | DOI | MR
[28] Shapovalov A. V., Trifonov A. Yu., “Semiclassical solutions of the nonlinear Schrödinger equation”, J. Nonlinear Math. Phys., 6:2 (1999), 1–12 | DOI | MR
[29] Malkin M. A., Man'ko V. I., Dynamic symmetries and coherent states of quantum systems, Nauka, Moscow, 1979
[30] Popov M. M., “Green functions for Schrödinger equation with quadratic potential”, Problemy Mat. Fiz., 1973, no. 6, 119–125 | Zbl
[31] Dodonov V. V., Malkin I. A., Man'ko V. I., “Integrals of motion, Green functions and coherent states of dynamic systems”, Intern. J. Theor. Phys., 14:1 (1975), 37–54 | DOI | MR
[32] Bang O., Krolikowski W., Wyller J., Rasmussen J. J., Collapse arrest and soliton stabilization in nonlocal nonlinear media, arXiv:nlin.PS/0201036
[33] Shvedov O. Yu., “Semiclasical symmetries”, Ann. Phys., 296 (2002), 51–89 | DOI | MR | Zbl