Representations of the Quantum Algebra $\mathrm{su}_q(1,1)$ and Discrete $q$-Ultraspherical Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 1 (2005) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive orthogonality relations for discrete $q$-ultraspherical polynomials and their duals by means of operators of representations of the quantum algebra $\mathrm{su}_q(1,1)$. Spectra and eigenfunctions of these operators are found explicitly. These eigenfunctions, when normalized, form an orthonormal basis in the representation space.
Keywords: Quantum algebra $su_q(1,1)$; representations; discrete $q$-ultraspherical polynomials.
@article{SIGMA_2005_1_a15,
     author = {Valentyna Groza},
     title = {Representations of the {Quantum} {Algebra} $\mathrm{su}_q(1,1)$ and {Discrete} $q${-Ultraspherical} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2005},
     volume = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a15/}
}
TY  - JOUR
AU  - Valentyna Groza
TI  - Representations of the Quantum Algebra $\mathrm{su}_q(1,1)$ and Discrete $q$-Ultraspherical Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2005
VL  - 1
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a15/
LA  - en
ID  - SIGMA_2005_1_a15
ER  - 
%0 Journal Article
%A Valentyna Groza
%T Representations of the Quantum Algebra $\mathrm{su}_q(1,1)$ and Discrete $q$-Ultraspherical Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2005
%V 1
%U http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a15/
%G en
%F SIGMA_2005_1_a15
Valentyna Groza. Representations of the Quantum Algebra $\mathrm{su}_q(1,1)$ and Discrete $q$-Ultraspherical Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a15/

[1] Gasper G., Rahman M., Basic hypergeometric functions, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[2] Klimyk A., Schmüdgen K., Quantum groups and their representations, Springer, Berlin, 1997 | MR

[3] Burban I. M., Klimyk A. U., “Representations of the quantum algebra $U_q(\mathrm{su}_{1,1})$”, J. Phys. A: Math. Gen., 26 (1993), 2139–2151 | DOI | MR | Zbl

[4] Atakishiyev N. M., Klimyk A. U., “On discrete $q$-ultraspherical polynomials and their duals”, J. Math. Anal. Appl., 306:2 (2005), 637–645 ; arXiv:math.CA/0403159 | DOI | MR | Zbl

[5] Atakishiyev N. M., Klimyk A. U., “On $q$-orthogonal polynomials, dual to little and big $q$-Jacobi polynomials”, J. Math. Anal. Appl., 294:2 (2004), 246–257 ; arXiv:math.CA/0307250 | DOI | MR | Zbl

[6] Berezanskii Ju. M., Expansions in eigenfunctions of selfadjoint operators, American Mathematical Society, Providence, RI, 1968 | MR

[7] Atakishiyev N. M., Klimyk A. U., Duality of $q$-polynomials, orthogonal on countable sets of points, arXiv:math.CA/0411249 | MR