@article{SIGMA_2005_1_a12,
author = {Iosif Khriplovich and Gennady Ruban},
title = {Simple {Derivation} of {Quasinormal} {Modes} for {Arbitrary} {Spins}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2005},
volume = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a12/}
}
Iosif Khriplovich; Gennady Ruban. Simple Derivation of Quasinormal Modes for Arbitrary Spins. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a12/
[1] Regge T., Wheeler J. A., “Stability of a Schwarzschild singularity”, Phys. Rev., 108 (1957), 1063–1069 | DOI | MR | Zbl
[2] Zerilli F. J., “Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics”, Phys. Rev. D, 2 (1970), 2141–2160 | DOI | MR
[3] Vishveshwara C. V., “Scattering of gravitational radiation by a Schwarzschild black hole”, Nature, 227 (1970), 936–938 | DOI
[4] Press W. H., “Long wave trains of gravitational waves from a vibrating black hole”, Astrophys. J., 170 (1971), L105 | DOI
[5] Leaver E. W., “An analytic representation for the quasi-normal modes of Kerr black holes”, Proc. Roy. Soc. London Ser. A, 402 (1985), 285–298 | DOI | MR
[6] Nollert H.-P., “Quasinormal modes of Schwarzschild black holes: the determination of quasinormal frequencies with very large imaginary parts”, Phys. Rev. D, 47 (1993), 5253–5258 | DOI
[7] Hod S., “Bohr's correspondence principle and the area spectrum of quantum black holes”, Phys. Rev. Lett., 81 (1998), 4293–4296 ; arXiv:gr-qc/9812002 | DOI | MR | Zbl
[8] Motl L., “An analytical computation of asymptotic Schwarzschild quasinormal frequencies”, Adv. Theor. Math. Phys., 6 (2002), 1135–1162 ; arXiv:gr-qc/0212096 | MR
[9] Motl L., Neitzke A., “Asymptotic black hole quasinormal frequencies”, Adv. Theor. Math. Phys., 7 (2003), 307–330 ; arXiv:hep-th/0301173 | MR
[10] Khriplovich I. B., “Quasinormal modes, quantized black holes, and correspondence principle”, Int. J. Mod. Phys. D, 14 (2005), 181–183 ; arXiv:gr-qc/0407111 | DOI | Zbl
[11] Castello-Branco K. H. C., Konoplya R. A., Zhidenko A., “High overtones of Dirac perturbations of a Schwarzschild black hole”, Phys. Rev. D, 71 (2005), 047502, 4 pp., ages ; arXiv:hep-th/0411055 | DOI | MR
[12] Jing J., “Dirac quasinormal modes of Schwarzschild black hole”, Phys. Rev. D, 71:12 (2005), 124006, 7 pp., ages ; arXiv:gr-qc/0502023 | DOI | MR
[13] Padmanabhan T., “Quasi normal modes: a simple derivation of the level spacing of the frequencies”, Class. Quant. Grav., 21 (2004), L1–L6 ; arXiv:gr-qc/0310027 | DOI | MR | Zbl
[14] Medved A. J. M., Martin D., Visser M., “Dirty black holes: quasinormal modes”, Class. Quant. Grav., 21 (2004), 1393–1405 ; arXiv:gr-qc/0310009 | DOI | MR | Zbl
[15] Roy Chaudhury T., Padmanabhan T., “Quasi normal modes in Schwarzschild–de Sitter spacetime: a simple derivation of the level spacing of the frequencies”, Phys. Rev. D, 69 (2004), 064033, 9 pages ; arXiv:gr-qc/0311064 | DOI | MR
[16] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series and products, Academic Press, New York, 1994 | Zbl