@article{SIGMA_2005_1_a10,
author = {George Bluman},
title = {Connections {Between} {Symmetries} and {Conservation} {Laws}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2005},
volume = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a10/}
}
George Bluman. Connections Between Symmetries and Conservation Laws. Symmetry, integrability and geometry: methods and applications, Tome 1 (2005). http://geodesic.mathdoc.fr/item/SIGMA_2005_1_a10/
[1] Noether E., “Invariante Variationsprobleme”, Nachr. König. Gesell. Wissen. Göttingen, Math.-Phys. Kl., 1918 (1918), 235–257 | Zbl
[2] Bessel-Hagen E., “Über die Erhaltungssätze der Elektrodynamik”, Math. Ann., 84 (1921), 258–276 | DOI | MR | Zbl
[3] Ibragimov N. H., Transformation groups applied to mathematical physics, Reidel, Boston, 1985 | MR | Zbl
[4] Olver P. J., Applications of Lie groups to differential equations, Springer, New York, 1986 | MR
[5] Bluman G., Kumei S., Symmetries and differential equations, Springer, New York, 1989 | MR | Zbl
[6] Anco S., Bluman G., “Direct construction of conservation laws from field equations”, Phys. Rev. Lett., 78 (1997), 2869–2873 | DOI | MR | Zbl
[7] Anco S., Bluman G., “Integrating factors and first integrals for ordinary differential equations”, European J. Appl. Math., 9 (1998), 245–259 | DOI | MR | Zbl
[8] Anco S., Bluman G., “Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classfications”, European J. Appl. Math., 13 (2002), 545–566 | MR | Zbl
[9] Anco S., Bluman G., “Direct construction method for conservation laws of partial differential equations. Part II: General treatment”, European J. Appl. Math., 9 (1998), 245–259 | DOI | MR | Zbl
[10] Krasil'shchik I. S., Vinogradov A. M., Symmetries and conservation laws for differential equations of mathematical physics, Amer. Math. Soc., Providence, RI, 1999 | MR
[11] Wolf T., “A comparison of four approaches to the calculation of conservation laws”, European J. Appl. Math., 13 (2002), 129–152 | DOI | MR | Zbl
[12] Bluman G., Temuerchaolu, Anco S., “New conservation laws obtained directly from symmetry action on a known conservation law”, J. Math. Anal. Appl., 322:1 (2006), 233–250 | DOI | MR | Zbl
[13] Bluman G., Doran-Wu P., “The use of factors to discover potential symmetries and linearizations”, Acta Appl. Math., 41 (1995), 21–43 | DOI | MR | Zbl
[14] Bluman G., Cheviakov A., “Framework for potential systems and nonlocal symmetries: Algorithmic approach”, J. Math. Phys., 46:12 (2005), 123506, 19 pp. | DOI | MR | Zbl
[15] Kumei S., Bluman G., “When nonlinear differential equations are equivalent to linear differential equations”, SIAM J. Appl. Math., 42 (1982), 1157–1173 | DOI | MR | Zbl
[16] Bluman G., Kumei S., “Symmetry-based algorithms to relate partial differential equations. I. Local symmetries”, European J. Appl. Math., 1 (1990), 189–216 | DOI | MR | Zbl
[17] Bluman G., Kumei S., “Symmetry-based algorithms to relate partial differential equations. II. Linearization by nonlocal symmetries”, European J. Appl. Math., 1 (1990), 217–223 | DOI | MR | Zbl
[18] Anco S., Wolf T., Bluman G., Computational linearization of partial differential equations by conservation laws, Dept. of Math., Brock University, St. Catharines, ON, Canada, 2005, in preparation
[19] Bluman G., Anco S., Symmetry and integration methods for differential equations, Springer, New York, 2002 | MR | Zbl
[20] Popovych R. O., Ivanova N. M., “Hierarchy of conservation laws of diffusion-convection equations”, J. Math. Phys., 46 (2005), 043502, 22 pp., ages | DOI | MR | Zbl
[21] Stephani H., Differential equations: Their solution using symmetries, Cambridge University Press, Cambridge, 1989 | MR | Zbl
[22] Kingston G., Sophocleous C., “Symmetries and form-preserving transformations of one-dimensional wave equations with dissipation”, Int. J. Non-Linear Mech., 36 (2001), 987–997 | DOI | MR | Zbl
[23] Bluman G., Temuerchaolu, Sahadevan R., “Local and nonlocal symmetries for nonlinear telegraph equations”, J. Math. Phys., 46 (2005), 023505, 12 pp., ages | DOI | MR | Zbl
[24] Bluman G., Temeuerchaolu, “Conservation laws for nonlinear telegraph equations”, J. Math. Anal. Appl., 310 (2005), 459–476 | MR | Zbl
[25] Bluman G., Temuerchaolu, “Comparing symmetries and conservation laws of nonlinear telegraph equations”, J. Math. Phys., 46 (2005), 073513, 14 pp., ages | DOI | MR | Zbl