On the complexity of the lattice of quasivarieties of nilpotent groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1118-1131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $p$ be a prime number. Denote by $\mathfrak{R}_{\delta, \lambda}$ the non-abelian variety of nilpotent groups of class at most 2 of exponent $p^\delta$ with commutator subgroup of exponent $p^\lambda;$ by $F_2$ the free group of rank 2 in $\mathfrak{R}_{\delta, \lambda};$ by $qH$ the quasivariety of groups generated by a group $H.$ It is proved that the interval $[qF_2, qG]$ is continual if all the following conditions are true: $G\in\mathfrak{R}_{\delta, \lambda},$ $G$ is a finite group defined in $\mathfrak{R}_{\delta, \lambda}$ by commutator defining relations, $qF_2\varsubsetneq qG.$
Keywords: lattice, quasivariety, nilpotent group.
@article{SEMR_2024_21_2_a9,
     author = {A. I. Budkin and S. A. Shakhova},
     title = {On the complexity of the lattice of quasivarieties of nilpotent groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1118--1131},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a9/}
}
TY  - JOUR
AU  - A. I. Budkin
AU  - S. A. Shakhova
TI  - On the complexity of the lattice of quasivarieties of nilpotent groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1118
EP  - 1131
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a9/
LA  - ru
ID  - SEMR_2024_21_2_a9
ER  - 
%0 Journal Article
%A A. I. Budkin
%A S. A. Shakhova
%T On the complexity of the lattice of quasivarieties of nilpotent groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1118-1131
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a9/
%G ru
%F SEMR_2024_21_2_a9
A. I. Budkin; S. A. Shakhova. On the complexity of the lattice of quasivarieties of nilpotent groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1118-1131. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a9/

[1] E.I. Khukhro, V.D. Mazurov (eds.), The Kourovka notebook. Unsolved problems in group theory, 20th ed., Sobolev Institut of Mathematics, Novosibirsk, 2022 https://kourovka-notebook.org/wp-content/uploads/2024/09/20tkt.pdf

[2] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, “Structure of quasivariety lattices. I: Independent axiomatizability”, Algebra Logic, 57:6 (2019), 445–462 | DOI | Zbl

[3] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, “Structure of quasivariety lattices. II: Undecidable problems”, Algebra Logic, 58:2 (2019), 123–136 | DOI | Zbl

[4] A.V. Kravchenko, A.M. Nurakunov, M.V. Schwidefsky, “Structure of quasivariety lattices. III: Finitely partitionable bases”, Algebra Logic, 59:3 (2020), 222–229 | DOI | Zbl

[5] M. V. Schwidefsky, “On sufficient conditions for Q-universality”, Sib. Èlectron. Mat. Izv., 17 (2020), 1043–1051 | DOI | Zbl

[6] V.A. Gorbunov, Algebraic theory of quasivarieties, Nauch. Kniga, Novosibirsk, 1999 | Zbl

[7] A.N. Fyodorov, Quasi-identities of finite 2-nilpotent groups, No 5489-B87, VINITI, M., 1987

[8] A.I. Budkin, “A lattice of quasivarieties of nilpotent groups”, Algebra Logic, 33:1 (1994), 14–21 | DOI | Zbl

[9] S.A. Shakhova, “On the lattice of quasivarieties of nilpotent groups of class 2”, Sib. Adv. Math., 7:3 (1997), 98–125 | Zbl

[10] S.A. Shakhova, “On a cardinality of the lattice of quasivarieties of nilpotent groups”, Algebra Logic, 38:3 (1999), 202–206 | DOI | Zbl

[11] A.I. Budkin, “On the quasivarieties generated by a finite group and lacking any independent bases of quasi-identities”, Sib. Math. J., 61:6 (2020), 983–993 | DOI | Zbl

[12] A.I. Budkin, “Independent axiomatizability of quasivarieties of torsion-free nilpotent groups”, Algebra Logic, 60:2 (2021), 79–88 | DOI | Zbl

[13] M.I. Kargapolov, Yu.I. Merzlyakov, Fundamentals of the theory of groups, Springer-Verlag, NewYork etc., 1979 | Zbl

[14] A.I.Mal'cev, Algebraic systems, Springer-Verlag, Berlin etc., 1973 | Zbl

[15] A.I. Budkin, Quasivarieties of groups, Altai State Univ., Barnaul, 2002

[16] A.I. Budkin, V.A. Gorbunov, “Quasivarieties of algebraic systems”, Algebra Logic, 14 (1975), 73–84 | DOI | Zbl