A nonlinear Input-Output model with capacitiy constraints
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 654-668
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper proposes a nonlinear mathematical model of intersectoral balance considering economic constraints. The model generalizes the traditional linear Leontief input-output model and is formalized as an optimal resource allocation problem with neoclassical production functions and constraints on sectoral production capacities. We formulate and investigate the problem of finding competitive equilibrium in the space of goods and prices. The constraint on production capacities leads to additional costs in the network associated with production shortages. We apply Young duality approach and Fenchel duality theory for a dual problem construction to describe the formation of equilibrium prices in the model accounting for additional costs. Possible operating modes of an open production network with limited production capacities are analyzed.
Keywords:
input-output analysis, production function, substitution of inputs, competitive equilibrium, Young duality, resource allocation problem, Fenchel duality theorem.
@article{SEMR_2024_21_2_a9,
author = {N. Obrosova and A. Shananin},
title = {A nonlinear {Input-Output} model with capacitiy constraints},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {654--668},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a9/}
}
TY - JOUR AU - N. Obrosova AU - A. Shananin TI - A nonlinear Input-Output model with capacitiy constraints JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 654 EP - 668 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a9/ LA - ru ID - SEMR_2024_21_2_a9 ER -
N. Obrosova; A. Shananin. A nonlinear Input-Output model with capacitiy constraints. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 654-668. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a9/