@article{SEMR_2024_21_2_a80,
author = {L. Micalizzi and E. F. Toro},
title = {Impact of numerical fluxes on high order semidiscrete {WENO{\textendash}DeC} finite volume schemes},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {B232--B287},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a80/}
}
TY - JOUR AU - L. Micalizzi AU - E. F. Toro TI - Impact of numerical fluxes on high order semidiscrete WENO–DeC finite volume schemes JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - B232 EP - B287 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a80/ LA - en ID - SEMR_2024_21_2_a80 ER -
%0 Journal Article %A L. Micalizzi %A E. F. Toro %T Impact of numerical fluxes on high order semidiscrete WENO–DeC finite volume schemes %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P B232-B287 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a80/ %G en %F SEMR_2024_21_2_a80
L. Micalizzi; E. F. Toro. Impact of numerical fluxes on high order semidiscrete WENO–DeC finite volume schemes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B232-B287. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a80/
[1] S.K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics”, Mat. Sb., Nov. Ser., 47:3 (1959), 271–306 | MR | Zbl
[2] R. Courant, E. Isaacson, M. Rees, “On the solution of nonlinear hyperbolic differential equations by finite differences”, Commun. Pure Appl. Math., 5:3 (1952), 243–255 | DOI | MR | Zbl
[3] C. Hirsch, Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics, Elsevier, 2007 | DOI | MR | Zbl | Zbl
[4] E.F. Toro, Riemann solvers and numerical methods for fluid dynamics. A practical introduction, Springer, Berlin, 2009 | DOI | MR | Zbl
[5] R.J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl
[6] E. Godlewski, P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Springer, New York, 2021 | DOI | MR | Zbl
[7] E.F. Toro, Computational algorithms for shallow water equations, Springer, Cham, 2024 | DOI | Zbl
[8] R.J. LeVeque, Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems, SIAM, Philadelphia, 2007 | DOI | MR | Zbl
[9] W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Tech. rep., Los Alamos Scientific Lab., N. Mex. (USA), 1973 https://digital.library.unt.edu/ark:/67531/metadc1036080
[10] B. Cockburn, G.E. Karniadakis, C.-W. Shu, “The development of discontinuous Galerkin methods”, Discontinuous Galerkin methods, LNCSE, 11, eds. Cockburn B. et al., Springer, Berlin, 2000, 3–50 | DOI | MR | Zbl
[11] B. Cockburn, C.-W. Shu, “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems”, J. Sci. Comput., 16:3 (2001), 173–261 | DOI | MR | Zbl
[12] X.-D. Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115:1 (1994), 200–212 | DOI | MR | Zbl
[13] C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws”, Advanced numerical approximation of nonlinear hyperbolic equations, eds. Quarteroni A. et al., Springer, Berlin, 1998, 325–432 | DOI | MR | Zbl
[14] C.-W. Shu, S. Osher, “Efficient implementation of essentially nonoscillatory shock-capturing schemes, II”, J. Comput. Phys., 83:1 (1989), 32–78 | DOI | MR | Zbl
[15] L. Micalizzi, D. Torlo, “A new efficient explicit deferred correction framework: analysis and applications to hyperbolic PDEs and adaptivity”, Commun. Appl. Math. Comput., 6:3 (2024), 1629–1664 | DOI | MR | Zbl
[16] M. Ciallella, L. Micalizzi, P. Öffner, D. Torlo, “An arbitrary high order and positivity preserving method for the shallow water equations”, Comput. Fluids, 247 (2022), 105630 | DOI | MR | Zbl
[17] R. Abgrall, “High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices”, J. Sci. Comput., 73:2-3 (2017), 461–494 | DOI | MR | Zbl
[18] M.L. Minion, “Semi-implicit spectral deferred correction methods for ordinary differential equations”, Commun. Math. Sci., 1:3 (2003), 471–500 | DOI | MR | Zbl
[19] A. Dutt, L. Greengard, V. Rokhlin, “Spectral deferred correction methods for ordinary differential equations”, BIT, 40:2 (2000), 241–266 | DOI | MR | Zbl
[20] P.D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Commun. Pure Appl. Math., 7:1 (1954), 159–193 | DOI | MR | Zbl
[21] E.F. Toro, On Glimm-related schemes for conservation laws, Tech. Rep. MMU-9602, Department of Mathematics and Physics, Manchester Metropolitan University, UK, 1996
[22] E.F. Toro, S.J. Billett, “Centred TVD schemes for hyperbolic conservation laws”, IMA J. Numer. Anal., 20:1 (2000), 47–79 | DOI | MR | Zbl
[23] G. Chen, E.F. Toro, Centred Difference Schemes for Non-Linear Hyperbolic Equations, Isaac Newton Institute for Mathematical Sciences Preprint Series NI 03046-NPA, 2003 | DOI | MR | Zbl
[24] V.V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles”, USSR Comput. Math. Math. Phys., 1:2 (1962), 304–320 | DOI | MR
[25] A. Harten, P.D. Lax, B. van Leer, “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws”, SIAM Rev., 25:1 (1983), 35–61 | DOI | MR | Zbl
[26] A. Kurganov, S. Noelle, G. Petrova, “Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations”, SIAM J. Sci. Comput., 23:3 (2001), 707–740 | DOI | MR | Zbl
[27] A. Kurganov, E. Tadmor, “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations”, J. Comput. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl
[28] A. Kurganov, R. Xin, “New low-dissipation central-upwind schemes”, J. Sci. Comput., 96:2 (2023), 56 | DOI | MR | Zbl
[29] E.F. Toro, M. Spruce, W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Tech. Rep. CoA 9204, Department of Aerospace Science, College of Aeronautics, Cranfield Institute of Technology, UK, 1992 | MR
[30] E.F. Toro, M. Spruce, W. Speares, “Restoration of the contact surface in the HLL-Riemann solver”, Shock Waves, 4:1 (1994), 25–34 | DOI | Zbl
[31] M. Ciallella, D. Torlo, M. Ricchiuto, “Arbitrary high order WENO finite volume scheme with flux globalization for moving equilibria preservation”, J. Sci. Comput., 96:2 (2023), 53 | DOI | MR | Zbl
[32] M. Ciallella, L. Micalizzi, V. Michel-Dansac, P. Öffner, D. Torlo, A high-order, fully well-balanced, unconditionally positivity-preserving finite volume framework for flood simulations, 2024, arXiv: 2402.12248 | DOI | MR
[33] G. Leidi, R. Andrassy, W. Barsukow, J. Higl, P.V. Edelmann, F.K. Röpke, “Performance of high-order Godunov-type methods in simulations of astrophysical low Mach number flows”, Astronomy Astrophysics, 686 (2024), A34 | DOI
[34] J. Qiu, “A numerical comparison of the Lax-Wendroff discontinuous Galerkin method based on different numerical fluxes”, J. Sci. Comput., 30 (2007), 345–367 | DOI | MR
[35] J. Qiu, “Development and comparison of numerical fluxes for LWDG methods”, Numer. Math., Theory Methods Appl., 1:4 (2008), 435–459 | MR | Zbl
[36] J. Qiu, B.C. Khoo, C.-W. Shu, “A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes”, J. Comput. Phys., 212:2 (2006), 540–565 | DOI | MR | Zbl
[37] L. Hongxia, L. Yiming, J. He, A Numerical Comparison of the HWENO Method Based on Different Numerical Fluxes, Authorea Preprints, 2020 | DOI
[38] O. San, K. Kara, “Evaluation of Riemann flux solvers for WENO reconstruction schemes: Kelvin-Helmholtz instability”, Comput. Fluids, 117 (2015), 24–41 | DOI | MR | Zbl
[39] V. Titarev, E.F. Toro, “WENO schemes based on upwind and centred TVD fluxes”, Comput. Fluids, 34:6 (2005), 705–720 | DOI | MR | Zbl
[40] E.F. Toro, V.A. Titarev, “TVD fluxes for the high-order ADER schemes”, J. Sci. Comput., 24:3 (2005), 285–309 | DOI | MR | Zbl
[41] N.M. Evstigneev, “On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 1. Construction and stability”, Computer Research and Modeling, 8:5 (2016), 721–753 | DOI
[42] N.M. Evstigneev, “On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 2. Numerical examples”, Computer Research and Modeling, 8:6 (2016), 885–910 | DOI
[43] G.A. Gerolymos, D. Sénéchal, I. Vallet, “Very-high-order WENO schemes”, J. Comput. Phys., 228:23 (2009), 8481–8524 | DOI | MR | Zbl
[44] D.S. Balsara, C.-W. Shu, “Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy”, J. Comput. Phys., 160:2 (2000), 405–452 | DOI | MR | Zbl
[45] J. Shi, Y.-T. Zhang, C.-W. Shu, “Resolution of high order WENO schemes for complicated flow structures”, J. Comput. Phys., 186:2 (2003), 690–696 | DOI | MR | Zbl
[46] V. Hermes, I. Klioutchnikov, H. Olivier, “Linear stability of WENO schemes coupled with explicit Runge-Kutta schemes”, Int. J. Numer. Methods Fluids, 69:6 (2012), 1065–1095 | DOI | MR | Zbl
[47] Z. Gao, L.-L. Fang, B.-S. Wang, Y. Wang, W.S. Don, “Seventh and ninth orders characteristic-wise alternative WENO finite difference schemes for hyperbolic conservation laws”, Comput. Fluids, 202 (2020), 104519 | DOI | MR | Zbl
[48] C.-W. Shu, “Total-variation-diminishing time discretizations”, SIAM J. Sci. Stat. Comput., 9:6 (1988), 1073–1084 | DOI | MR | Zbl
[49] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, J. Comput. Phys., 77:2 (1988), 439–471 | DOI | MR | Zbl
[50] S. Gottlieb, C.-W. Shu, E. Tadmor, “Strong stability-preserving high-order time discretization methods”, SIAM Rev., 43:1 (2001), 89–112 | DOI | MR | Zbl
[51] S.J. Ruuth, R.J. Spiteri, “Two barriers on strong-stability-preserving time discretization methods”, J. Sci. Comput., 17:1-4 (2002), 211–220 | DOI | MR | Zbl
[52] M. Han Veiga, L. Micalizzi, D. Torlo, “On improving the efficiency of ADER methods”, Appl. Math. Comput., 466 (2024), 128426 | DOI | MR | Zbl
[53] D.A. Velasco Romero, M. Han Veiga, R. Teyssier, “Spectral difference method with a posteriori limiting: application to the Euler equations in one and two space dimensions”, Mon. Not. R. Astron. Soc., 520:3 (2023), 3591–3608 | DOI
[54] R. Abgrall, W. Barsukow, “Extensions of active flux to arbitrary order of accuracy”, ESAIM, Math. Model. Numer. Anal., 57:2 (2023), 991–1027 | DOI | MR | Zbl
[55] L. Micalizzi, M. Ricchiuto, R. Abgrall, “Novel well-balanced continuous interior penalty stabilizations”, J. Sci. Comput., 100:1 (2024), 14 | DOI | MR | Zbl
[56] R. Abgrall, P. Bacigaluppi, S. Tokareva, “High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics”, Comput. Math. Appl., 78:2 (2019), 274–297 | DOI | MR | Zbl
[57] P. Bacigaluppi, R. Abgrall, S. Tokareva, “A posteriori" limited high order and robust schemes for transient simulations of fluid flows in gas dynamics”, J. Comput. Phys., 476 (2023), 111898 | DOI | MR | Zbl
[58] R. Abgrall, D. Torlo, “High order asymptotic preserving deferred correction implicit-explicit schemes for kinetic models”, SIAM J. Sci. Comput., 42:3 (2020), B816–B845 | DOI | MR | Zbl
[59] E.F. Toro, R. Millington, L. Nejad, “Towards very high order Godunov schemes”, Godunov Methods, eds. Toro, E.F., Kluwer, New York, 2001, 907–940 | DOI | MR | Zbl
[60] E.F. Toro, V. Titarev, “Solution of the generalized Riemann problem for advection-reaction equations”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 458:2018 (2002), 271–281 | DOI | MR | Zbl
[61] V.A. Titarev, E.F. Toro, “ADER: Arbitrary high-order Godunov approach”, J. Sci. Comput., 17:1-4 (2002), 609–618 | DOI | MR | Zbl
[62] T. Schwartzkopff, C.-D. Munz, E.F. Toro, “ADER: A high-order approach for linear hyperbolic systems in 2D”, J. Sci. Comput., 17:1-4 (2002), 231–240 | DOI | MR | Zbl
[63] M. Dumbser, C.-D. Munz, “ADER discontinuous Galerkin schemes for aeroacoustics”, C. R., Méc., Acad. Sci. Paris, 333:9 (2005), 683–687 | DOI | Zbl
[64] M. Dumbser, T. Schwartzkopff, C.-D. Munz, “Arbitrary high order finite volume schemes for linear wave propagation”, Computational science and high performance computing II, eds. Krause E. et al., Springer, Berlin–Heidelberg, 2006, 129–144 | DOI
[65] M. Dumbser, C.-D. Munz, “Building blocks for arbitrary high order discontinuous Galerkin schemes”, J. Sci. Comput., 27:1-3 (2006), 215–230 | DOI | MR | Zbl
[66] M. Dumbser, D.S. Balsara, E.F. Toro, C.-D. Munz, “A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes”, J. Comput. Phys., 227:18 (2008), 8209–8253 | DOI | MR | Zbl
[67] M. Dumbser, “Arbitrary high order $P_N P_M$ schemes on unstructured meshes for the compressible Navier-Stokes equations”, Comput. Fluids, 39:1 (2010), 60–76 | DOI | MR | Zbl
[68] M. Dumbser, O. Zanotti, “Very high order $P_N P_M$ schemes on unstructured meshes for the resistive relativistic MHD equations”, J. Comput. Phys., 228:18 (2009), 6991–7006 | DOI | MR | Zbl
[69] W. Boscheri, D.S. Balsara, “High order direct arbitrary-Lagrangian-Eulerian (ALE) $P_N P_M$ schemes with WENO adaptive-order reconstruction on unstructured meshes”, J. Comput. Phys., 398 (2019), 108899 | DOI | MR | Zbl
[70] I. Popov, “Space-time adaptive ADER-DG finite element method with LST-DG predictor and a posteriori sub-cell ADER-WENO finite-volume limiting for multidimensional detonation waves simulation”, Comput. Fluids, 284 (2024), 106425 | DOI | MR
[71] E.F. Toro, V. Titarev, M. Dumbser, A. Iske, C.R. Goetz, C.E. Castro, G.I. Montecinos, R. Dematté, “The ADER approach for approximating hyperbolic equations to very high accuracy”, Hyperbolic problems: Theory, numerics, applications, v. I, eds. Parés C. et al., Springer, Cham, 2024, 83–105 | DOI | MR | Zbl
[72] L. Micalizzi, D. Torlo, W. Boscheri, “Efficient iterative arbitrary high order methods: an adaptive bridge between low and high order”, Commun. Appl. Math. Comput., 2023 | DOI | MR
[73] R. Abgrall, “On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation”, J. Comput. Phys., 114:1 (1994), 45–58 | DOI | MR | Zbl
[74] V.A. Titarev, E.F. Toro, “Finite-volume WENO schemes for three-dimensional conservation laws”, J. Comput. Phys., 201:1 (2004), 238–260 | DOI | MR | Zbl
[75] E.F. Toro, V.A. Titarev, “MUSTA fluxes for systems of conservation laws”, J. Comput. Phys., 216:2 (2006), 403–429 | DOI | MR | Zbl
[76] M. Dumbser, M. Käser, V.A. Titarev, E.F. Toro, “Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems”, J. Comput. Phys., 226:1 (2007), 204–243 | DOI | MR | Zbl
[77] V. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics”, J. Comput. Phys., 230:7 (2011), 2384–2390 | DOI | MR | Zbl
[78] P.K. Sweby, “High resolution schemes using flux limiters for hyperbolic conservation laws”, SIAM J. Numer. Anal., 21:5 (1984), 995–1011 | DOI | MR | Zbl
[79] B. Van Leer, “Towards the ultimate conservative difference scheme I. The quest for monotonicity”, Proc. Third Int. Conf. Numer. Methods Fluid Mech., Lect. Notes Phys., 18, Springer, Berlin–Heidelberg, 1973, 163–168 | DOI
[80] A. Harten, S. Osher, “Uniformly high-order accurate nonoscillatory schemes. I”, SIAM J. Numer. Anal., 24:2 (1987), 279–309 | DOI | MR | Zbl
[81] A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, “Uniformly high order accurate essentially non-oscillatory schemes, III”, J. Comput. Phys., 71:2 (1987), 231–303 | DOI | MR | Zbl
[82] G.-S. Jiang, C.-W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl
[83] M. Dumbser, C. Enaux, E.F. Toro, “Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws”, J. Comput. Phys., 227:8 (2008), 3971–4001 | DOI | MR | Zbl
[84] S. Boscarino, J.-M. Qiu, G. Russo, “Implicit-explicit integral deferred correction methods for stiff problems”, SIAM J. Sci. Comput., 40:2 (2018), A787–A816 | DOI | MR | Zbl
[85] J. Huang, C.-W. Shu, “Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms”, J. Comput. Phys., 361 (2018), 111–135 | DOI | MR | Zbl
[86] W. Boscheri, M. Tavelli, C.E. Castro, “An all Froude high order IMEX scheme for the shallow water equations on unstructured Voronoi meshes”, Appl. Numer. Math., 185 (2023), 311–335 | DOI | MR | Zbl
[87] C. Caballero-Cárdenas, M.J. Castro, C. Chalons, T. Morales de Luna, M.L. Muñoz-Ruiz, “A semi-implicit fully exactly well-balanced relaxation scheme for the shallow water system”, SIAM J. Sci. Comput., 46:4 (2024), A2503–A2527 | DOI | MR | Zbl
[88] Y. Xing, C.-W. Shu, “High-order well-balanced finite difference WENO schemes for a class of hyperbolic systems with source terms”, J. Sci. Comput., 27:1-3 (2006), 477–494 | DOI | MR | Zbl
[89] M.J. Castro, C. Parés, “Well-balanced high-order finite volume methods for systems of balance laws”, J. Sci. Comput., 82:2 (2020), 48 | DOI | MR | Zbl
[90] Y. Mantri, S. Noelle, “Well-balanced discontinuous Galerkin scheme for 2$\times$2 hyperbolic balance law”, J. Comput. Phys., 429 (2021), 110011 | DOI | MR | Zbl
[91] J.P. Berberich, P. Chandrashekar, C. Klingenberg, “High order well-balanced finite volume methods for multi-dimensional systems of hyperbolic balance laws”, Comput. Fluids, 219 (2021), 104858 | DOI | MR | Zbl
[92] W. Barsukow, J.P. Berberich, “A well-balanced active flux method for the shallow water equations with wetting and drying”, Commun. Appl. Math. Comput., 6:4 (2024), 2385–2430 | DOI | MR | Zbl
[93] M. Han Veiga, D.A. Velasco-Romero, R. Abgrall, R. Teyssier, “Capturing near-equilibrium solutions: a comparison between high-order discontinuous Galerkin methods and well-balanced schemes”, Commun. Comput. Phys., 26:1 (2019), 1–34 | DOI | MR | Zbl
[94] J. Qiu, C.-W. Shu, “On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes”, J. Comput. Phys., 183:1 (2002), 187–209 | DOI | MR | Zbl
[95] T. Miyoshi, T. Minoshima, “A short note on reconstruction variables in shock capturing schemes for magnetohydrodynamics”, J. Comput. Phys., 423 (2020), 109804 | DOI | MR | Zbl
[96] J. Peng, C. Zhai, G. Ni, H. Yong, Y. Shen, “An adaptive characteristic-wise reconstruction WENO-Z scheme for gas dynamic Euler equations”, Comput. Fluids, 179 (2019), 34–51 | DOI | MR | Zbl
[97] D. Ghosh, J.D. Baeder, “Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws”, SIAM J. Sci. Comput., 34:3 (2012), A1678–A1706 | DOI | MR | Zbl
[98] S. Chakravarthy, S. Osher, “High resolution applications of the Osher upwind scheme for the Euler equations”, 6th Computational Fluid Dynamics Conference (Danvers), ARC, Danvers, 1983 | DOI | MR
[99] B. van Leer, “Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow”, J. Comput. Phys., 23:3 (1977), 263–275 | DOI | MR | Zbl
[100] P.L. Roe, “Characteristic-based schemes for the Euler equations”, Annu. Rev. Fluid Mech., 18 (1986), 337–365 | DOI | MR | Zbl
[101] G.D. van Albada, B. van Leer, W. Roberts jun., “A comparative study of computational methods in cosmic gas dynamics”, Astron. Astrophys., 108:1 (1982), 76–84 | DOI | Zbl
[102] B. van Leer, “Towards the ultimate conservative difference scheme II: Monotonicity and conservation combined in a second-order scheme”, J. Comput. Phys., 14:4 (1974), 361–370 | DOI | MR | Zbl
[103] M. Ciallella, L. Micalizzi, P. Öffner, D. Torlo, Modified patankar deferred correction WENO code for shallow water equations, Git repository, 2021 https://github.com/accdavlo/sw-mpdec.git
[104] J. Shi, C. Hu, C.-W. Shu, “A technique of treating negative weights in WENO schemes”, J. Comput. Phys., 175:1 (2002), 108–127 | DOI | Zbl
[105] L. Micalizzi, Efficient iterative arbitrary high order methods: adaptivity and structure preservation, PhD thesis, University of Zurich, 2024 | DOI
[106] B. Riemann, Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Verlag der Dieterichschen Buchhandlung, 8, 1860 | DOI
[107] S.A. Tokareva, E.F. Toro, “HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow”, J. Comput. Phys., 229:10 (2010), 3573–3604 | DOI | MR | Zbl
[108] R.D. Richtmyer, K.W. Morton, Difference methods for initial-value problems, Interscience Publishers, New York-London-Sidney, 1967 https://books.google.com/books/about/Difference_Methods_for_Initial_Value_Pro.html?id=nd1QAAAAMAAJ | Zbl
[109] E.F. Toro, L.O. Müller, A. Siviglia, “Bounds for wave speeds in the Riemann problem: direct theoretical estimates”, Comput. Fluids, 209 (2020), 104640 | DOI | MR | Zbl
[110] M.J.C. Diaz, A. Kurganov, T.M. de Luna, “Path-conservative central-upwind schemes for nonconservative hyperbolic systems”, ESAIM, Math. Model. Numer. Anal., 53:3 (2019), 959–985 | DOI | MR | Zbl
[111] A. Kurganov, D. Levy, “Central-upwind schemes for the Saint-Venant system”, ESAIM, Math. Model. Numer. Anal., 36:3 (2002), 397–425 | DOI | MR | Zbl
[112] A. Kurganov, Y. Liu, V. Zeitlin, “A well-balanced central-upwind scheme for the thermal rotating shallow water equations”, J. Comput. Phys., 411 (2020), 109414 | DOI | MR | Zbl
[113] S.F. Davis, “Simplified second-order Godunov-type methods”, SIAM J. Sci. Stat. Comput., 9:3 (1988), 445–473 | DOI | MR | Zbl
[114] B. Einfeldt, “On Godunov-type methods for gas dynamics”, SIAM J. Numer. Anal., 25:2 (1988), 294–318 | DOI | MR | Zbl
[115] E.F. Toro, “A fast Riemann solver with constant covolume applied to the random choice method”, Int. J. Numer. Methods Fluids, 9:9 (1989), 1145–1164 | DOI | Zbl
[116] J.-L. Guermond, B. Popov, “Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations”, J. Comput. Phys., 321 (2016), 908–926 | DOI | MR | Zbl
[117] L. Fox, E. Goodwin, “Some new methods for the numerical integration of ordinary differential equations”, Proc. Camb. Philos. Soc., 45:3 (1949), 373–388 | DOI | MR | Zbl
[118] M.L. Minion, “Semi-implicit projection methods for incompressible flow based on spectral deferred corrections”, Appl. Numer. Math., 48:3-4 (2004), 369–387 | DOI | MR | Zbl
[119] A.T. Layton, M.L. Minion, “Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations”, BIT, 45:2 (2005), 341–373 | DOI | MR | Zbl
[120] J. Huang, J. Jia, M. Minion, “Accelerating the convergence of spectral deferred correction methods”, J. Comput. Phys., 214:2 (2006), 633–656 | DOI | MR | Zbl
[121] M. Minion, “A hybrid parareal spectral deferred corrections method”, Commun. Appl. Math. Comput. Sci., 5:2 (2010), 265–301 | DOI | MR | Zbl
[122] R. Speck, D. Ruprecht, M. Emmett, M. Minion, M. Bolten, R. Krause, “A multi-level spectral deferred correction method”, BIT Numerical Mathematics, 55:3 (2015), 843–867 | DOI | MR | Zbl
[123] S. Michel, D. Torlo, M. Ricchiuto, R. Abgrall, “Spectral analysis of continuous FEM for hyperbolic PDEs: influence of approximation, stabilization, and time-stepping”, J. Sci. Comput., 89:2 (2021), 31 | DOI | MR | Zbl
[124] S. Michel, D. Torlo, M. Ricchiuto, R. Abgrall, “Spectral analysis of high order continuous FEM for hyperbolic PDEs on triangular meshes: influence of approximation, stabilization, and time-stepping”, J. Sci. Comput., 94:3 (2023), 49 | DOI | MR | Zbl
[125] R. Abgrall, E. Le Mélédo, P. Öffner, D. Torlo, “Relaxation deferred correction methods and their applications to residual distribution schemes”, SMAI J. Comput. Math., 8 (2022), 125–160 | DOI | MR | Zbl
[126] R. Abgrall, “Staggered schemes for compressible flow: a general construction”, SIAM J. Sci. Comput., 46:1 (2024), A399–A428 | DOI | MR | Zbl
[127] R. Abgrall, K. Lipnikov, N. Morgan, S. Tokareva, “Multidimensional staggered grid residual distribution scheme for Lagrangian hydrodynamics”, SIAM J. Sci. Comput., 42:1 (2020), A343–A370 | DOI | MR | Zbl
[128] P. Öffner, D. Torlo, “Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes”, Appl. Numer. Math., 153 (2020), 15–34 | DOI | MR | Zbl
[129] M. Han Veiga, P. Öffner, D. Torlo, “DeC and ADER: similarities, differences and a unified framework”, J. Sci. Comput., 87:1 (2021), 2 | DOI | MR | Zbl
[130] S. Boscarino, J.-M. Qiu, “Error estimates of the integral deferred correction method for stiff problems”, ESAIM, Math. Model. Numer. Anal., 50:4 (2016), 1137–1166 | DOI | MR | Zbl
[131] F.P. Hamon, M. Schreiber, M.L. Minion, “Multi-level spectral deferred corrections scheme for the shallow water equations on the rotating sphere”, J. Comput. Phys., 376 (2019), 435–454 | DOI | MR | Zbl
[132] S.R. Franco, F.J. Gaspar, M.A. Villela Pinto, C. Rodrigo, “Multigrid method based on a space-time approach with standard coarsening for parabolic problems”, Appl. Math. Comput., 317 (2018), 25–34 | DOI | MR | Zbl
[133] M.L. Minion, R. Speck, M. Bolten, M. Emmett, D. Ruprecht, “Interweaving PFASST and parallel multigrid”, SIAM J. Sci. Comput., 37:5 (2015), S244–S263 | DOI | MR | Zbl
[134] P. Benedusi, M.L. Minion, R. Krause, “An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem”, Comput. Math. Appl., 99:1 (2021), 162–170 | DOI | MR | Zbl
[135] Y. Liu, C.-W. Shu, M. Zhang, “Strong stability preserving property of the deferred correction time discretization”, J. Comput. Math., 26:5 (2008), 633–656 https://www.jstor.org/stable/43693468 | MR | Zbl
[136] B.W. Ong, R.J. Spiteri, “Deferred correction methods for ordinary differential equations”, J. Sci. Comput., 83:3 (2020), 60 | DOI | MR | Zbl
[137] D. Ketcheson, U. Bin Waheed, “A comparison of high-order explicit Runge-Kutta, extrapolation, and deferred correction methods in serial and parallel”, Commun. Appl. Math. Comput. Sci., 9:2 (2014), 175–200 | DOI | MR | Zbl
[138] A. Christlieb, B. Ong, J.-M. Qiu, “Comments on high-order integrators embedded within integral deferred correction methods”, Commun. Appl. Math. Comput. Sci., 4:1 (2009), 27–56 | DOI | MR | Zbl
[139] A. Christlieb, B. Ong, J.-M. Qiu, “Integral deferred correction methods constructed with high order Runge-Kutta integrators”, Math. Comput., 79:270 (2010), 761–783 | DOI | MR | Zbl
[140] E. Hairer, S. Nørsett, G. Wanner, Solving ordinary differential equations, v. I, Nonstiff problems, Springer-Verlag, Berlin etc., 1987 | DOI | MR | Zbl
[141] E.F. Toro, A. Hidalgo, M. Dumbser, “FORCE schemes on unstructured meshes I: Conservative hyperbolic systems”, J. Comput. Phys., 228:9 (2009), 3368–3389 | DOI | MR | Zbl
[142] M. Dumbser, A. Hidalgo, M. Castro, C. Parés, E.F. Toro, “FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems”, Comput. Methods Appl. Mech. Eng., 199:9-12 (2010), 625–647 | DOI | MR | Zbl
[143] E.F. Toro, NUMERICA: A Library of Source Codes for Teaching, Research and Applications, 1999 https://www.abebooks.com/9780953648306/Numerica-Library-Source-Codes-Teaching-0953648303/plp
[144] S. Mishra, U.S. Fjordholm, R. Abgrall, Numerical methods for conservation laws and related equations, 2019 https://metaphor.ethz.ch/x/2019/hs/401-4671-00L/literature/mishra_hyperbolic_pdes.pdf
[145] A. Rogerson, E. Meiburg, “A numerical study of the convergence properties of ENO schemes”, J. Sci. Comput., 5:2 (1990), 151–167 | DOI | Zbl
[146] C.-W. Shu, “Numerical experiments on the accuracy of ENO and modified ENO schemes”, J. Sci. Comput., 5:2 (1990), 127–149 | DOI | Zbl
[147] G.A. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws”, J. Comput. Phys., 27:1 (1978), 1–31 | DOI | MR | Zbl
[148] P. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl
[149] H. Liu, J. Qiu, “Finite difference Hermite WENO schemes for hyperbolic conservation laws”, J. Sci. Comput., 63:2 (2015), 548–572 | DOI | MR | Zbl
[150] L. Xuan, Y. Min, J. Cai, Y. Ma, Y. Zhenguo, A filtered embedded weighted compact nonlinear scheme for hyperbolic conservation law, Available at SSRN, 2023 | DOI
[151] W. Boscheri, M. Dumbser, E. Gaburro, “Continuous finite element subgrid basis functions for discontinuous Galerkin schemes on unstructured polygonal Voronoi meshes”, Commun. Comput. Phys., 32:1 (2022), 259–298 | DOI | MR | Zbl
[152] W. Boscheri, R. Loubère, M. Dumbser, “Direct arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws”, J. Comput. Phys., 292:1 (2015), 56–87 | DOI | MR | Zbl
[153] W. Boscheri, M. Dumbser, “Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes”, Commun. Comput. Phys., 14:5 (2013), 1174–1206 | DOI | MR | Zbl
[154] E. Gaburro, W. Boscheri, S. Chiocchetti, C. Klingenberg, V. Springel, M. Dumbser, “High order direct arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes”, J. Comput. Phys., 407 (2020), 109167 | DOI | MR | Zbl
[155] W. Boscheri, M. Dumbser, “Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes”, J. Comput. Phys., 346 (2017), 449–479 | DOI | MR | Zbl