Impact of numerical fluxes on high order semidiscrete WENO–DeC finite volume schemes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B232-B287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The numerical flux determines the performance of numerical methods for solving hyperbolic partial differential equations (PDEs). In this work, we compare a selection of 8 numerical fluxes in the framework of nonlinear semidiscrete finite volume (FV) schemes, based on Weighted Essentially Non–Oscillatory (WENO) spatial reconstruction and Deferred Correction (DeC) time discretization. The methodology is implemented and systematically assessed for order of accuracy in space and time up to seven. The numerical fluxes selected in the present study represent the two existing classes of fluxes, namely centred and upwind. Centred fluxes do not explicitly use wave propagation information, while, upwind fluxes do so from the solution of the Riemann problem via a wave model containing $A$ waves. Upwind fluxes include two subclasses: complete and incomplete fluxes. For complete upwind fluxes, $A = E$, where $E$ is the number of characteristic fields in the exact problem. For incomplete upwind ones, $A < E$. Our study is conducted for the one– and two–dimensional Euler equations, for which we consider the following numerical fluxes: Lax–Friedrichs (LxF), First–Order Centred (FORCE), Rusanov (Rus), Harten–Lax–van Leer (HLL), Central–Upwind (CU), Low–Dissipation Central–Upwind (LDCU), HLLC, and the flux computed through the exact Riemann solver (Ex.RS). We find that the numerical flux has an effect on the performance of the methods. The magnitude of the effect depends on the type of numerical flux and on the order of accuracy of the scheme. It also depends on the type of problem; that is, whether the solution is smooth or discontinuous, whether discontinuities are linear or nonlinear, whether linear discontinuities are fast– or slowly–moving, and whether the solution is evolved for short or long time. For the special case of smooth solutions, the expected convergence rates are attained for all fluxes and all orders. However, errors are still larger for the simpler fluxes, though differences diminish as the order of accuracy increases. For all selected cases involving discontinuities, differences among fluxes arise for all orders of accuracy considered. Moreover, there are flow situations for which the differences are huge, independently of the order of accuracy of the scheme. The best fluxes are the complete upwind ones. The difference between the best centred flux, FORCE, and incomplete upwind ones is not dramatic, which constitutes and advantage for good centred methods due to their simplicity and generality.
Keywords: hyperbolic PDEs, WENO, Deferred Correction, high order methods, numerical fluxes.
@article{SEMR_2024_21_2_a80,
     author = {L. Micalizzi and E. F. Toro},
     title = {Impact of numerical fluxes on high order semidiscrete {WENO{\textendash}DeC} finite volume schemes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {B232--B287},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a80/}
}
TY  - JOUR
AU  - L. Micalizzi
AU  - E. F. Toro
TI  - Impact of numerical fluxes on high order semidiscrete WENO–DeC finite volume schemes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - B232
EP  - B287
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a80/
LA  - en
ID  - SEMR_2024_21_2_a80
ER  - 
%0 Journal Article
%A L. Micalizzi
%A E. F. Toro
%T Impact of numerical fluxes on high order semidiscrete WENO–DeC finite volume schemes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P B232-B287
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a80/
%G en
%F SEMR_2024_21_2_a80
L. Micalizzi; E. F. Toro. Impact of numerical fluxes on high order semidiscrete WENO–DeC finite volume schemes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B232-B287. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a80/

[1] S.K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics”, Mat. Sb., Nov. Ser., 47:3 (1959), 271–306 | MR | Zbl

[2] R. Courant, E. Isaacson, M. Rees, “On the solution of nonlinear hyperbolic differential equations by finite differences”, Commun. Pure Appl. Math., 5:3 (1952), 243–255 | DOI | MR | Zbl

[3] C. Hirsch, Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics, Elsevier, 2007 | DOI | MR | Zbl | Zbl

[4] E.F. Toro, Riemann solvers and numerical methods for fluid dynamics. A practical introduction, Springer, Berlin, 2009 | DOI | MR | Zbl

[5] R.J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl

[6] E. Godlewski, P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Springer, New York, 2021 | DOI | MR | Zbl

[7] E.F. Toro, Computational algorithms for shallow water equations, Springer, Cham, 2024 | DOI | Zbl

[8] R.J. LeVeque, Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems, SIAM, Philadelphia, 2007 | DOI | MR | Zbl

[9] W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Tech. rep., Los Alamos Scientific Lab., N. Mex. (USA), 1973 https://digital.library.unt.edu/ark:/67531/metadc1036080

[10] B. Cockburn, G.E. Karniadakis, C.-W. Shu, “The development of discontinuous Galerkin methods”, Discontinuous Galerkin methods, LNCSE, 11, eds. Cockburn B. et al., Springer, Berlin, 2000, 3–50 | DOI | MR | Zbl

[11] B. Cockburn, C.-W. Shu, “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems”, J. Sci. Comput., 16:3 (2001), 173–261 | DOI | MR | Zbl

[12] X.-D. Liu, S. Osher, T. Chan, “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115:1 (1994), 200–212 | DOI | MR | Zbl

[13] C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws”, Advanced numerical approximation of nonlinear hyperbolic equations, eds. Quarteroni A. et al., Springer, Berlin, 1998, 325–432 | DOI | MR | Zbl

[14] C.-W. Shu, S. Osher, “Efficient implementation of essentially nonoscillatory shock-capturing schemes, II”, J. Comput. Phys., 83:1 (1989), 32–78 | DOI | MR | Zbl

[15] L. Micalizzi, D. Torlo, “A new efficient explicit deferred correction framework: analysis and applications to hyperbolic PDEs and adaptivity”, Commun. Appl. Math. Comput., 6:3 (2024), 1629–1664 | DOI | MR | Zbl

[16] M. Ciallella, L. Micalizzi, P. Öffner, D. Torlo, “An arbitrary high order and positivity preserving method for the shallow water equations”, Comput. Fluids, 247 (2022), 105630 | DOI | MR | Zbl

[17] R. Abgrall, “High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices”, J. Sci. Comput., 73:2-3 (2017), 461–494 | DOI | MR | Zbl

[18] M.L. Minion, “Semi-implicit spectral deferred correction methods for ordinary differential equations”, Commun. Math. Sci., 1:3 (2003), 471–500 | DOI | MR | Zbl

[19] A. Dutt, L. Greengard, V. Rokhlin, “Spectral deferred correction methods for ordinary differential equations”, BIT, 40:2 (2000), 241–266 | DOI | MR | Zbl

[20] P.D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Commun. Pure Appl. Math., 7:1 (1954), 159–193 | DOI | MR | Zbl

[21] E.F. Toro, On Glimm-related schemes for conservation laws, Tech. Rep. MMU-9602, Department of Mathematics and Physics, Manchester Metropolitan University, UK, 1996

[22] E.F. Toro, S.J. Billett, “Centred TVD schemes for hyperbolic conservation laws”, IMA J. Numer. Anal., 20:1 (2000), 47–79 | DOI | MR | Zbl

[23] G. Chen, E.F. Toro, Centred Difference Schemes for Non-Linear Hyperbolic Equations, Isaac Newton Institute for Mathematical Sciences Preprint Series NI 03046-NPA, 2003 | DOI | MR | Zbl

[24] V.V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles”, USSR Comput. Math. Math. Phys., 1:2 (1962), 304–320 | DOI | MR

[25] A. Harten, P.D. Lax, B. van Leer, “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws”, SIAM Rev., 25:1 (1983), 35–61 | DOI | MR | Zbl

[26] A. Kurganov, S. Noelle, G. Petrova, “Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations”, SIAM J. Sci. Comput., 23:3 (2001), 707–740 | DOI | MR | Zbl

[27] A. Kurganov, E. Tadmor, “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations”, J. Comput. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl

[28] A. Kurganov, R. Xin, “New low-dissipation central-upwind schemes”, J. Sci. Comput., 96:2 (2023), 56 | DOI | MR | Zbl

[29] E.F. Toro, M. Spruce, W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Tech. Rep. CoA 9204, Department of Aerospace Science, College of Aeronautics, Cranfield Institute of Technology, UK, 1992 | MR

[30] E.F. Toro, M. Spruce, W. Speares, “Restoration of the contact surface in the HLL-Riemann solver”, Shock Waves, 4:1 (1994), 25–34 | DOI | Zbl

[31] M. Ciallella, D. Torlo, M. Ricchiuto, “Arbitrary high order WENO finite volume scheme with flux globalization for moving equilibria preservation”, J. Sci. Comput., 96:2 (2023), 53 | DOI | MR | Zbl

[32] M. Ciallella, L. Micalizzi, V. Michel-Dansac, P. Öffner, D. Torlo, A high-order, fully well-balanced, unconditionally positivity-preserving finite volume framework for flood simulations, 2024, arXiv: 2402.12248 | DOI | MR

[33] G. Leidi, R. Andrassy, W. Barsukow, J. Higl, P.V. Edelmann, F.K. Röpke, “Performance of high-order Godunov-type methods in simulations of astrophysical low Mach number flows”, Astronomy Astrophysics, 686 (2024), A34 | DOI

[34] J. Qiu, “A numerical comparison of the Lax-Wendroff discontinuous Galerkin method based on different numerical fluxes”, J. Sci. Comput., 30 (2007), 345–367 | DOI | MR

[35] J. Qiu, “Development and comparison of numerical fluxes for LWDG methods”, Numer. Math., Theory Methods Appl., 1:4 (2008), 435–459 | MR | Zbl

[36] J. Qiu, B.C. Khoo, C.-W. Shu, “A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes”, J. Comput. Phys., 212:2 (2006), 540–565 | DOI | MR | Zbl

[37] L. Hongxia, L. Yiming, J. He, A Numerical Comparison of the HWENO Method Based on Different Numerical Fluxes, Authorea Preprints, 2020 | DOI

[38] O. San, K. Kara, “Evaluation of Riemann flux solvers for WENO reconstruction schemes: Kelvin-Helmholtz instability”, Comput. Fluids, 117 (2015), 24–41 | DOI | MR | Zbl

[39] V. Titarev, E.F. Toro, “WENO schemes based on upwind and centred TVD fluxes”, Comput. Fluids, 34:6 (2005), 705–720 | DOI | MR | Zbl

[40] E.F. Toro, V.A. Titarev, “TVD fluxes for the high-order ADER schemes”, J. Sci. Comput., 24:3 (2005), 285–309 | DOI | MR | Zbl

[41] N.M. Evstigneev, “On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 1. Construction and stability”, Computer Research and Modeling, 8:5 (2016), 721–753 | DOI

[42] N.M. Evstigneev, “On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 2. Numerical examples”, Computer Research and Modeling, 8:6 (2016), 885–910 | DOI

[43] G.A. Gerolymos, D. Sénéchal, I. Vallet, “Very-high-order WENO schemes”, J. Comput. Phys., 228:23 (2009), 8481–8524 | DOI | MR | Zbl

[44] D.S. Balsara, C.-W. Shu, “Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy”, J. Comput. Phys., 160:2 (2000), 405–452 | DOI | MR | Zbl

[45] J. Shi, Y.-T. Zhang, C.-W. Shu, “Resolution of high order WENO schemes for complicated flow structures”, J. Comput. Phys., 186:2 (2003), 690–696 | DOI | MR | Zbl

[46] V. Hermes, I. Klioutchnikov, H. Olivier, “Linear stability of WENO schemes coupled with explicit Runge-Kutta schemes”, Int. J. Numer. Methods Fluids, 69:6 (2012), 1065–1095 | DOI | MR | Zbl

[47] Z. Gao, L.-L. Fang, B.-S. Wang, Y. Wang, W.S. Don, “Seventh and ninth orders characteristic-wise alternative WENO finite difference schemes for hyperbolic conservation laws”, Comput. Fluids, 202 (2020), 104519 | DOI | MR | Zbl

[48] C.-W. Shu, “Total-variation-diminishing time discretizations”, SIAM J. Sci. Stat. Comput., 9:6 (1988), 1073–1084 | DOI | MR | Zbl

[49] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, J. Comput. Phys., 77:2 (1988), 439–471 | DOI | MR | Zbl

[50] S. Gottlieb, C.-W. Shu, E. Tadmor, “Strong stability-preserving high-order time discretization methods”, SIAM Rev., 43:1 (2001), 89–112 | DOI | MR | Zbl

[51] S.J. Ruuth, R.J. Spiteri, “Two barriers on strong-stability-preserving time discretization methods”, J. Sci. Comput., 17:1-4 (2002), 211–220 | DOI | MR | Zbl

[52] M. Han Veiga, L. Micalizzi, D. Torlo, “On improving the efficiency of ADER methods”, Appl. Math. Comput., 466 (2024), 128426 | DOI | MR | Zbl

[53] D.A. Velasco Romero, M. Han Veiga, R. Teyssier, “Spectral difference method with a posteriori limiting: application to the Euler equations in one and two space dimensions”, Mon. Not. R. Astron. Soc., 520:3 (2023), 3591–3608 | DOI

[54] R. Abgrall, W. Barsukow, “Extensions of active flux to arbitrary order of accuracy”, ESAIM, Math. Model. Numer. Anal., 57:2 (2023), 991–1027 | DOI | MR | Zbl

[55] L. Micalizzi, M. Ricchiuto, R. Abgrall, “Novel well-balanced continuous interior penalty stabilizations”, J. Sci. Comput., 100:1 (2024), 14 | DOI | MR | Zbl

[56] R. Abgrall, P. Bacigaluppi, S. Tokareva, “High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics”, Comput. Math. Appl., 78:2 (2019), 274–297 | DOI | MR | Zbl

[57] P. Bacigaluppi, R. Abgrall, S. Tokareva, “A posteriori" limited high order and robust schemes for transient simulations of fluid flows in gas dynamics”, J. Comput. Phys., 476 (2023), 111898 | DOI | MR | Zbl

[58] R. Abgrall, D. Torlo, “High order asymptotic preserving deferred correction implicit-explicit schemes for kinetic models”, SIAM J. Sci. Comput., 42:3 (2020), B816–B845 | DOI | MR | Zbl

[59] E.F. Toro, R. Millington, L. Nejad, “Towards very high order Godunov schemes”, Godunov Methods, eds. Toro, E.F., Kluwer, New York, 2001, 907–940 | DOI | MR | Zbl

[60] E.F. Toro, V. Titarev, “Solution of the generalized Riemann problem for advection-reaction equations”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 458:2018 (2002), 271–281 | DOI | MR | Zbl

[61] V.A. Titarev, E.F. Toro, “ADER: Arbitrary high-order Godunov approach”, J. Sci. Comput., 17:1-4 (2002), 609–618 | DOI | MR | Zbl

[62] T. Schwartzkopff, C.-D. Munz, E.F. Toro, “ADER: A high-order approach for linear hyperbolic systems in 2D”, J. Sci. Comput., 17:1-4 (2002), 231–240 | DOI | MR | Zbl

[63] M. Dumbser, C.-D. Munz, “ADER discontinuous Galerkin schemes for aeroacoustics”, C. R., Méc., Acad. Sci. Paris, 333:9 (2005), 683–687 | DOI | Zbl

[64] M. Dumbser, T. Schwartzkopff, C.-D. Munz, “Arbitrary high order finite volume schemes for linear wave propagation”, Computational science and high performance computing II, eds. Krause E. et al., Springer, Berlin–Heidelberg, 2006, 129–144 | DOI

[65] M. Dumbser, C.-D. Munz, “Building blocks for arbitrary high order discontinuous Galerkin schemes”, J. Sci. Comput., 27:1-3 (2006), 215–230 | DOI | MR | Zbl

[66] M. Dumbser, D.S. Balsara, E.F. Toro, C.-D. Munz, “A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes”, J. Comput. Phys., 227:18 (2008), 8209–8253 | DOI | MR | Zbl

[67] M. Dumbser, “Arbitrary high order $P_N P_M$ schemes on unstructured meshes for the compressible Navier-Stokes equations”, Comput. Fluids, 39:1 (2010), 60–76 | DOI | MR | Zbl

[68] M. Dumbser, O. Zanotti, “Very high order $P_N P_M$ schemes on unstructured meshes for the resistive relativistic MHD equations”, J. Comput. Phys., 228:18 (2009), 6991–7006 | DOI | MR | Zbl

[69] W. Boscheri, D.S. Balsara, “High order direct arbitrary-Lagrangian-Eulerian (ALE) $P_N P_M$ schemes with WENO adaptive-order reconstruction on unstructured meshes”, J. Comput. Phys., 398 (2019), 108899 | DOI | MR | Zbl

[70] I. Popov, “Space-time adaptive ADER-DG finite element method with LST-DG predictor and a posteriori sub-cell ADER-WENO finite-volume limiting for multidimensional detonation waves simulation”, Comput. Fluids, 284 (2024), 106425 | DOI | MR

[71] E.F. Toro, V. Titarev, M. Dumbser, A. Iske, C.R. Goetz, C.E. Castro, G.I. Montecinos, R. Dematté, “The ADER approach for approximating hyperbolic equations to very high accuracy”, Hyperbolic problems: Theory, numerics, applications, v. I, eds. Parés C. et al., Springer, Cham, 2024, 83–105 | DOI | MR | Zbl

[72] L. Micalizzi, D. Torlo, W. Boscheri, “Efficient iterative arbitrary high order methods: an adaptive bridge between low and high order”, Commun. Appl. Math. Comput., 2023 | DOI | MR

[73] R. Abgrall, “On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation”, J. Comput. Phys., 114:1 (1994), 45–58 | DOI | MR | Zbl

[74] V.A. Titarev, E.F. Toro, “Finite-volume WENO schemes for three-dimensional conservation laws”, J. Comput. Phys., 201:1 (2004), 238–260 | DOI | MR | Zbl

[75] E.F. Toro, V.A. Titarev, “MUSTA fluxes for systems of conservation laws”, J. Comput. Phys., 216:2 (2006), 403–429 | DOI | MR | Zbl

[76] M. Dumbser, M. Käser, V.A. Titarev, E.F. Toro, “Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems”, J. Comput. Phys., 226:1 (2007), 204–243 | DOI | MR | Zbl

[77] V. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics”, J. Comput. Phys., 230:7 (2011), 2384–2390 | DOI | MR | Zbl

[78] P.K. Sweby, “High resolution schemes using flux limiters for hyperbolic conservation laws”, SIAM J. Numer. Anal., 21:5 (1984), 995–1011 | DOI | MR | Zbl

[79] B. Van Leer, “Towards the ultimate conservative difference scheme I. The quest for monotonicity”, Proc. Third Int. Conf. Numer. Methods Fluid Mech., Lect. Notes Phys., 18, Springer, Berlin–Heidelberg, 1973, 163–168 | DOI

[80] A. Harten, S. Osher, “Uniformly high-order accurate nonoscillatory schemes. I”, SIAM J. Numer. Anal., 24:2 (1987), 279–309 | DOI | MR | Zbl

[81] A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, “Uniformly high order accurate essentially non-oscillatory schemes, III”, J. Comput. Phys., 71:2 (1987), 231–303 | DOI | MR | Zbl

[82] G.-S. Jiang, C.-W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl

[83] M. Dumbser, C. Enaux, E.F. Toro, “Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws”, J. Comput. Phys., 227:8 (2008), 3971–4001 | DOI | MR | Zbl

[84] S. Boscarino, J.-M. Qiu, G. Russo, “Implicit-explicit integral deferred correction methods for stiff problems”, SIAM J. Sci. Comput., 40:2 (2018), A787–A816 | DOI | MR | Zbl

[85] J. Huang, C.-W. Shu, “Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms”, J. Comput. Phys., 361 (2018), 111–135 | DOI | MR | Zbl

[86] W. Boscheri, M. Tavelli, C.E. Castro, “An all Froude high order IMEX scheme for the shallow water equations on unstructured Voronoi meshes”, Appl. Numer. Math., 185 (2023), 311–335 | DOI | MR | Zbl

[87] C. Caballero-Cárdenas, M.J. Castro, C. Chalons, T. Morales de Luna, M.L. Muñoz-Ruiz, “A semi-implicit fully exactly well-balanced relaxation scheme for the shallow water system”, SIAM J. Sci. Comput., 46:4 (2024), A2503–A2527 | DOI | MR | Zbl

[88] Y. Xing, C.-W. Shu, “High-order well-balanced finite difference WENO schemes for a class of hyperbolic systems with source terms”, J. Sci. Comput., 27:1-3 (2006), 477–494 | DOI | MR | Zbl

[89] M.J. Castro, C. Parés, “Well-balanced high-order finite volume methods for systems of balance laws”, J. Sci. Comput., 82:2 (2020), 48 | DOI | MR | Zbl

[90] Y. Mantri, S. Noelle, “Well-balanced discontinuous Galerkin scheme for 2$\times$2 hyperbolic balance law”, J. Comput. Phys., 429 (2021), 110011 | DOI | MR | Zbl

[91] J.P. Berberich, P. Chandrashekar, C. Klingenberg, “High order well-balanced finite volume methods for multi-dimensional systems of hyperbolic balance laws”, Comput. Fluids, 219 (2021), 104858 | DOI | MR | Zbl

[92] W. Barsukow, J.P. Berberich, “A well-balanced active flux method for the shallow water equations with wetting and drying”, Commun. Appl. Math. Comput., 6:4 (2024), 2385–2430 | DOI | MR | Zbl

[93] M. Han Veiga, D.A. Velasco-Romero, R. Abgrall, R. Teyssier, “Capturing near-equilibrium solutions: a comparison between high-order discontinuous Galerkin methods and well-balanced schemes”, Commun. Comput. Phys., 26:1 (2019), 1–34 | DOI | MR | Zbl

[94] J. Qiu, C.-W. Shu, “On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes”, J. Comput. Phys., 183:1 (2002), 187–209 | DOI | MR | Zbl

[95] T. Miyoshi, T. Minoshima, “A short note on reconstruction variables in shock capturing schemes for magnetohydrodynamics”, J. Comput. Phys., 423 (2020), 109804 | DOI | MR | Zbl

[96] J. Peng, C. Zhai, G. Ni, H. Yong, Y. Shen, “An adaptive characteristic-wise reconstruction WENO-Z scheme for gas dynamic Euler equations”, Comput. Fluids, 179 (2019), 34–51 | DOI | MR | Zbl

[97] D. Ghosh, J.D. Baeder, “Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws”, SIAM J. Sci. Comput., 34:3 (2012), A1678–A1706 | DOI | MR | Zbl

[98] S. Chakravarthy, S. Osher, “High resolution applications of the Osher upwind scheme for the Euler equations”, 6th Computational Fluid Dynamics Conference (Danvers), ARC, Danvers, 1983 | DOI | MR

[99] B. van Leer, “Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow”, J. Comput. Phys., 23:3 (1977), 263–275 | DOI | MR | Zbl

[100] P.L. Roe, “Characteristic-based schemes for the Euler equations”, Annu. Rev. Fluid Mech., 18 (1986), 337–365 | DOI | MR | Zbl

[101] G.D. van Albada, B. van Leer, W. Roberts jun., “A comparative study of computational methods in cosmic gas dynamics”, Astron. Astrophys., 108:1 (1982), 76–84 | DOI | Zbl

[102] B. van Leer, “Towards the ultimate conservative difference scheme II: Monotonicity and conservation combined in a second-order scheme”, J. Comput. Phys., 14:4 (1974), 361–370 | DOI | MR | Zbl

[103] M. Ciallella, L. Micalizzi, P. Öffner, D. Torlo, Modified patankar deferred correction WENO code for shallow water equations, Git repository, 2021 https://github.com/accdavlo/sw-mpdec.git

[104] J. Shi, C. Hu, C.-W. Shu, “A technique of treating negative weights in WENO schemes”, J. Comput. Phys., 175:1 (2002), 108–127 | DOI | Zbl

[105] L. Micalizzi, Efficient iterative arbitrary high order methods: adaptivity and structure preservation, PhD thesis, University of Zurich, 2024 | DOI

[106] B. Riemann, Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Verlag der Dieterichschen Buchhandlung, 8, 1860 | DOI

[107] S.A. Tokareva, E.F. Toro, “HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow”, J. Comput. Phys., 229:10 (2010), 3573–3604 | DOI | MR | Zbl

[108] R.D. Richtmyer, K.W. Morton, Difference methods for initial-value problems, Interscience Publishers, New York-London-Sidney, 1967 https://books.google.com/books/about/Difference_Methods_for_Initial_Value_Pro.html?id=nd1QAAAAMAAJ | Zbl

[109] E.F. Toro, L.O. Müller, A. Siviglia, “Bounds for wave speeds in the Riemann problem: direct theoretical estimates”, Comput. Fluids, 209 (2020), 104640 | DOI | MR | Zbl

[110] M.J.C. Diaz, A. Kurganov, T.M. de Luna, “Path-conservative central-upwind schemes for nonconservative hyperbolic systems”, ESAIM, Math. Model. Numer. Anal., 53:3 (2019), 959–985 | DOI | MR | Zbl

[111] A. Kurganov, D. Levy, “Central-upwind schemes for the Saint-Venant system”, ESAIM, Math. Model. Numer. Anal., 36:3 (2002), 397–425 | DOI | MR | Zbl

[112] A. Kurganov, Y. Liu, V. Zeitlin, “A well-balanced central-upwind scheme for the thermal rotating shallow water equations”, J. Comput. Phys., 411 (2020), 109414 | DOI | MR | Zbl

[113] S.F. Davis, “Simplified second-order Godunov-type methods”, SIAM J. Sci. Stat. Comput., 9:3 (1988), 445–473 | DOI | MR | Zbl

[114] B. Einfeldt, “On Godunov-type methods for gas dynamics”, SIAM J. Numer. Anal., 25:2 (1988), 294–318 | DOI | MR | Zbl

[115] E.F. Toro, “A fast Riemann solver with constant covolume applied to the random choice method”, Int. J. Numer. Methods Fluids, 9:9 (1989), 1145–1164 | DOI | Zbl

[116] J.-L. Guermond, B. Popov, “Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations”, J. Comput. Phys., 321 (2016), 908–926 | DOI | MR | Zbl

[117] L. Fox, E. Goodwin, “Some new methods for the numerical integration of ordinary differential equations”, Proc. Camb. Philos. Soc., 45:3 (1949), 373–388 | DOI | MR | Zbl

[118] M.L. Minion, “Semi-implicit projection methods for incompressible flow based on spectral deferred corrections”, Appl. Numer. Math., 48:3-4 (2004), 369–387 | DOI | MR | Zbl

[119] A.T. Layton, M.L. Minion, “Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations”, BIT, 45:2 (2005), 341–373 | DOI | MR | Zbl

[120] J. Huang, J. Jia, M. Minion, “Accelerating the convergence of spectral deferred correction methods”, J. Comput. Phys., 214:2 (2006), 633–656 | DOI | MR | Zbl

[121] M. Minion, “A hybrid parareal spectral deferred corrections method”, Commun. Appl. Math. Comput. Sci., 5:2 (2010), 265–301 | DOI | MR | Zbl

[122] R. Speck, D. Ruprecht, M. Emmett, M. Minion, M. Bolten, R. Krause, “A multi-level spectral deferred correction method”, BIT Numerical Mathematics, 55:3 (2015), 843–867 | DOI | MR | Zbl

[123] S. Michel, D. Torlo, M. Ricchiuto, R. Abgrall, “Spectral analysis of continuous FEM for hyperbolic PDEs: influence of approximation, stabilization, and time-stepping”, J. Sci. Comput., 89:2 (2021), 31 | DOI | MR | Zbl

[124] S. Michel, D. Torlo, M. Ricchiuto, R. Abgrall, “Spectral analysis of high order continuous FEM for hyperbolic PDEs on triangular meshes: influence of approximation, stabilization, and time-stepping”, J. Sci. Comput., 94:3 (2023), 49 | DOI | MR | Zbl

[125] R. Abgrall, E. Le Mélédo, P. Öffner, D. Torlo, “Relaxation deferred correction methods and their applications to residual distribution schemes”, SMAI J. Comput. Math., 8 (2022), 125–160 | DOI | MR | Zbl

[126] R. Abgrall, “Staggered schemes for compressible flow: a general construction”, SIAM J. Sci. Comput., 46:1 (2024), A399–A428 | DOI | MR | Zbl

[127] R. Abgrall, K. Lipnikov, N. Morgan, S. Tokareva, “Multidimensional staggered grid residual distribution scheme for Lagrangian hydrodynamics”, SIAM J. Sci. Comput., 42:1 (2020), A343–A370 | DOI | MR | Zbl

[128] P. Öffner, D. Torlo, “Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes”, Appl. Numer. Math., 153 (2020), 15–34 | DOI | MR | Zbl

[129] M. Han Veiga, P. Öffner, D. Torlo, “DeC and ADER: similarities, differences and a unified framework”, J. Sci. Comput., 87:1 (2021), 2 | DOI | MR | Zbl

[130] S. Boscarino, J.-M. Qiu, “Error estimates of the integral deferred correction method for stiff problems”, ESAIM, Math. Model. Numer. Anal., 50:4 (2016), 1137–1166 | DOI | MR | Zbl

[131] F.P. Hamon, M. Schreiber, M.L. Minion, “Multi-level spectral deferred corrections scheme for the shallow water equations on the rotating sphere”, J. Comput. Phys., 376 (2019), 435–454 | DOI | MR | Zbl

[132] S.R. Franco, F.J. Gaspar, M.A. Villela Pinto, C. Rodrigo, “Multigrid method based on a space-time approach with standard coarsening for parabolic problems”, Appl. Math. Comput., 317 (2018), 25–34 | DOI | MR | Zbl

[133] M.L. Minion, R. Speck, M. Bolten, M. Emmett, D. Ruprecht, “Interweaving PFASST and parallel multigrid”, SIAM J. Sci. Comput., 37:5 (2015), S244–S263 | DOI | MR | Zbl

[134] P. Benedusi, M.L. Minion, R. Krause, “An experimental comparison of a space-time multigrid method with PFASST for a reaction-diffusion problem”, Comput. Math. Appl., 99:1 (2021), 162–170 | DOI | MR | Zbl

[135] Y. Liu, C.-W. Shu, M. Zhang, “Strong stability preserving property of the deferred correction time discretization”, J. Comput. Math., 26:5 (2008), 633–656 https://www.jstor.org/stable/43693468 | MR | Zbl

[136] B.W. Ong, R.J. Spiteri, “Deferred correction methods for ordinary differential equations”, J. Sci. Comput., 83:3 (2020), 60 | DOI | MR | Zbl

[137] D. Ketcheson, U. Bin Waheed, “A comparison of high-order explicit Runge-Kutta, extrapolation, and deferred correction methods in serial and parallel”, Commun. Appl. Math. Comput. Sci., 9:2 (2014), 175–200 | DOI | MR | Zbl

[138] A. Christlieb, B. Ong, J.-M. Qiu, “Comments on high-order integrators embedded within integral deferred correction methods”, Commun. Appl. Math. Comput. Sci., 4:1 (2009), 27–56 | DOI | MR | Zbl

[139] A. Christlieb, B. Ong, J.-M. Qiu, “Integral deferred correction methods constructed with high order Runge-Kutta integrators”, Math. Comput., 79:270 (2010), 761–783 | DOI | MR | Zbl

[140] E. Hairer, S. Nørsett, G. Wanner, Solving ordinary differential equations, v. I, Nonstiff problems, Springer-Verlag, Berlin etc., 1987 | DOI | MR | Zbl

[141] E.F. Toro, A. Hidalgo, M. Dumbser, “FORCE schemes on unstructured meshes I: Conservative hyperbolic systems”, J. Comput. Phys., 228:9 (2009), 3368–3389 | DOI | MR | Zbl

[142] M. Dumbser, A. Hidalgo, M. Castro, C. Parés, E.F. Toro, “FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems”, Comput. Methods Appl. Mech. Eng., 199:9-12 (2010), 625–647 | DOI | MR | Zbl

[143] E.F. Toro, NUMERICA: A Library of Source Codes for Teaching, Research and Applications, 1999 https://www.abebooks.com/9780953648306/Numerica-Library-Source-Codes-Teaching-0953648303/plp

[144] S. Mishra, U.S. Fjordholm, R. Abgrall, Numerical methods for conservation laws and related equations, 2019 https://metaphor.ethz.ch/x/2019/hs/401-4671-00L/literature/mishra_hyperbolic_pdes.pdf

[145] A. Rogerson, E. Meiburg, “A numerical study of the convergence properties of ENO schemes”, J. Sci. Comput., 5:2 (1990), 151–167 | DOI | Zbl

[146] C.-W. Shu, “Numerical experiments on the accuracy of ENO and modified ENO schemes”, J. Sci. Comput., 5:2 (1990), 127–149 | DOI | Zbl

[147] G.A. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws”, J. Comput. Phys., 27:1 (1978), 1–31 | DOI | MR | Zbl

[148] P. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl

[149] H. Liu, J. Qiu, “Finite difference Hermite WENO schemes for hyperbolic conservation laws”, J. Sci. Comput., 63:2 (2015), 548–572 | DOI | MR | Zbl

[150] L. Xuan, Y. Min, J. Cai, Y. Ma, Y. Zhenguo, A filtered embedded weighted compact nonlinear scheme for hyperbolic conservation law, Available at SSRN, 2023 | DOI

[151] W. Boscheri, M. Dumbser, E. Gaburro, “Continuous finite element subgrid basis functions for discontinuous Galerkin schemes on unstructured polygonal Voronoi meshes”, Commun. Comput. Phys., 32:1 (2022), 259–298 | DOI | MR | Zbl

[152] W. Boscheri, R. Loubère, M. Dumbser, “Direct arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws”, J. Comput. Phys., 292:1 (2015), 56–87 | DOI | MR | Zbl

[153] W. Boscheri, M. Dumbser, “Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes”, Commun. Comput. Phys., 14:5 (2013), 1174–1206 | DOI | MR | Zbl

[154] E. Gaburro, W. Boscheri, S. Chiocchetti, C. Klingenberg, V. Springel, M. Dumbser, “High order direct arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes”, J. Comput. Phys., 407 (2020), 109167 | DOI | MR | Zbl

[155] W. Boscheri, M. Dumbser, “Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes”, J. Comput. Phys., 346 (2017), 449–479 | DOI | MR | Zbl