Mots-clés : Transposition graph
@article{SEMR_2024_21_2_a8,
author = {A. V. Kravchuk},
title = {Constructing segments of quadratic length in $Spec(T_n)$ through segments of linear length},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {927--939},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a8/}
}
TY - JOUR AU - A. V. Kravchuk TI - Constructing segments of quadratic length in $Spec(T_n)$ through segments of linear length JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 927 EP - 939 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a8/ LA - en ID - SEMR_2024_21_2_a8 ER -
A. V. Kravchuk. Constructing segments of quadratic length in $Spec(T_n)$ through segments of linear length. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 927-939. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a8/
[1] A.E. Brouwer, W.H. Haemers, Spectra of graphs, Springer, Berlin, 2012 | MR | Zbl
[2] P. Diaconis; M. Shahshahani, “Generating a random permutation with random transpositions”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 57 (1981), 159–179 | DOI | MR | Zbl
[3] G.H. Hardy, S. Ramanujan, “Asymptotic formulae in combinatory analysis”, Proc. Lond. Math. Soc. (2), 17 (1918), 75–115 | DOI | MR | Zbl
[4] K. Kalpakis, Y. Yesha, “On the bisection width of the transposition network”, Networks, 29:1 (1997), 69–76 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[5] E.V. Konstantinova, “Some problems on Cayley graphs”, Linear Algebra Appl., 429:11-12 (2008), 2754–2769 | DOI | MR | Zbl
[6] E.V. Konstantinova, A. Kravchuk, “Spectrum of the transposition graph”, Linear Algebra Appl., 654 (2022), 379–389 | DOI | MR | Zbl
[7] E.V. Konstantinova, A. Kravchuk, “Distinct eigenvalues of the transposition graph”, Linear Algebra Appl., 690 (2024), 132–141 | DOI | MR | Zbl
[8] E.V. Konstantinova, D.V. Lytkina, “Integral Cayley graphs over finite groups”, Algebra Colloq., 27:1 (2020), 131–136 | DOI | MR | Zbl