Constructing segments of quadratic length in $Spec(T_n)$ through segments of linear length
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 927-939 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Transposition graph $T_n$ is defined as a Cayley graph over the symmetric group $Sym_n$ generated by all transpositions. It is known that the spectrum of $T_n$ consists of integers, but it is not known exactly how these numbers are distributed. In this paper we prove that integers from the segment $[-n, n]$ lie in the spectrum of $T_n$ for any $n\geqslant 31$. Using this fact we also prove the main result of this paper that a segment of quadratic length with respect to $n$ lies in the spectrum of $T_n$.
Keywords: integral graph, spectrum.
Mots-clés : Transposition graph
@article{SEMR_2024_21_2_a8,
     author = {A. V. Kravchuk},
     title = {Constructing segments of quadratic length in $Spec(T_n)$ through segments of linear length},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {927--939},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a8/}
}
TY  - JOUR
AU  - A. V. Kravchuk
TI  - Constructing segments of quadratic length in $Spec(T_n)$ through segments of linear length
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 927
EP  - 939
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a8/
LA  - en
ID  - SEMR_2024_21_2_a8
ER  - 
%0 Journal Article
%A A. V. Kravchuk
%T Constructing segments of quadratic length in $Spec(T_n)$ through segments of linear length
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 927-939
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a8/
%G en
%F SEMR_2024_21_2_a8
A. V. Kravchuk. Constructing segments of quadratic length in $Spec(T_n)$ through segments of linear length. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 927-939. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a8/

[1] A.E. Brouwer, W.H. Haemers, Spectra of graphs, Springer, Berlin, 2012 | MR | Zbl

[2] P. Diaconis; M. Shahshahani, “Generating a random permutation with random transpositions”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 57 (1981), 159–179 | DOI | MR | Zbl

[3] G.H. Hardy, S. Ramanujan, “Asymptotic formulae in combinatory analysis”, Proc. Lond. Math. Soc. (2), 17 (1918), 75–115 | DOI | MR | Zbl

[4] K. Kalpakis, Y. Yesha, “On the bisection width of the transposition network”, Networks, 29:1 (1997), 69–76 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] E.V. Konstantinova, “Some problems on Cayley graphs”, Linear Algebra Appl., 429:11-12 (2008), 2754–2769 | DOI | MR | Zbl

[6] E.V. Konstantinova, A. Kravchuk, “Spectrum of the transposition graph”, Linear Algebra Appl., 654 (2022), 379–389 | DOI | MR | Zbl

[7] E.V. Konstantinova, A. Kravchuk, “Distinct eigenvalues of the transposition graph”, Linear Algebra Appl., 690 (2024), 132–141 | DOI | MR | Zbl

[8] E.V. Konstantinova, D.V. Lytkina, “Integral Cayley graphs over finite groups”, Algebra Colloq., 27:1 (2020), 131–136 | DOI | MR | Zbl