Mots-clés : wave propagation.
@article{SEMR_2024_21_2_a79,
author = {G. Reshetova and E. Romenski},
title = {Modeling the variability of seismic properties of frozen multiphase media depending on temperature},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {B203--B231},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a79/}
}
TY - JOUR AU - G. Reshetova AU - E. Romenski TI - Modeling the variability of seismic properties of frozen multiphase media depending on temperature JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - B203 EP - B231 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a79/ LA - en ID - SEMR_2024_21_2_a79 ER -
%0 Journal Article %A G. Reshetova %A E. Romenski %T Modeling the variability of seismic properties of frozen multiphase media depending on temperature %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P B203-B231 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a79/ %G en %F SEMR_2024_21_2_a79
G. Reshetova; E. Romenski. Modeling the variability of seismic properties of frozen multiphase media depending on temperature. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B203-B231. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a79/
[1] M.A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range”, J. Acoust. Soc. Amer., 28:2 (1956), 168–178 | DOI | MR
[2] M.A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range”, J. Acoust. Soc. Amer., 28:2 (1956), 179–191 | DOI | MR
[3] J.M. Carcione, C. Morency, V. Santos, “Computational poroelasticity – A review”, Geophysics, 75:5 (2010), 75A229–75A243 | DOI
[4] F. Pesavento, B.A. Schrefler, G. Sciumè, “Multiphase flow in deforming porous media: a review”, Arch. Comput. Methods Eng., 24:2 (2017), 423–448 | DOI | MR | Zbl
[5] Zhiqi Shi, Xiao He, Dehua Chen, Xiuming Wang, “Seismic wave dispersion and attenuation resulting from multiscale wave-induced fluid flow in partially saturated porous media”, Geophys. J. Intern., 236:2 (2024), 1172–1182 | DOI
[6] S.K. Godunov, E.I. Romenskii, Elements of continuum mechanics and conservation laws, Kluwer, New York, 2003 | DOI | MR | Zbl
[7] E. Romenski, “Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics”, Math. Comput. Modelling, 28:10 (1998), 115–130 | DOI | MR
[8] I. Peshkov, M. Pavelka, E. Romenski, M. Grmela, “Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations”, Contin. Mech. Thermodyn., 30:6 (2018), 1343–1378 | DOI | MR | Zbl
[9] E. Romenski, G. Reshetova, I. Peshkov, M. Dumbser, “Modeling wavefields in saturated elastic porous media based on thermodynamically compatible system theory for two-phase solid-fluid mixtures”, Comput. Fluids, 206 (2020), 104587 | DOI | MR | Zbl
[10] G. Reshetova, E. Romenski, “Diffuse interface approach to modeling wavefields in a saturated porous medium”, Appl. Math. Comput., 398 (2021), 125978 | DOI
[11] E. Romenski, G. Reshetova, I. Peshkov, “Two-phase hyperbolic model for porous media saturated with a viscous fluid and its application to wavefield simulation”, Appl. Math. Modelling, 106 (2022), 567–600 | DOI | MR | Zbl
[12] E. Romenski, G. Reshetova, I. Peshkov, “Computational model for compressible two-phase flow in a deformed porous medium”, Computational Science and Its Applications – ICCSA 2021, ICCSA 2021, Lecture Notes Computer Science, 12949, eds. Gervasi O., et al., Springer, Cham, 2021 | DOI
[13] E. Romenski, G. Reshetova, I. Peshkov, “Thermodynamically compatible hyperbolic model of a compressible multiphase flow in a deformable porous medium and its application to wavefields modeling”, AIP Conf. Proc., 2448:1 (2021), 020019 | DOI
[14] E. Romenski, A. Belozerov, I. Peshkov, “Conservative formulation for compressible multiphase flows”, Q. Appl. Math., 74:1 (2016), 113–136 | DOI | MR | Zbl
[15] J. Virieux, “P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophysics, 51:4 (1986), 889–901 | DOI
[16] A.R. Levander, “Fourth-order finite-difference P-SV seismograms”, Geophysics, 53:11 (1988), 1379–1492 | DOI
[17] R.W. Graves, “Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences”, Bull. Seismolog. Soc. America, 86:4 (1996), 1091–1106 | DOI | MR
[18] T.N. Davis, Permafrost: a guide to frozen ground in transition, University of Alaska Press, Fairbanks, 2001 https://www.geobotany.org/library/pubs/DavisN2001_permafrost_ch4.pdf
[19] A.A. Samarskii, The theory of difference schemes, Marcel Dekker, New York, 2001 | DOI | MR | Zbl
[20] P. Moczo, J. Kristek, V. Vavrycuk, R. J. Archuleta, L. Halada, “3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities”, Bull. Seismolog. Soc. America, 92:8 (2002), 3042–3066 | DOI