@article{SEMR_2024_21_2_a78,
author = {O. A. Kovyrkina and V. V. Ostapenko and E. I. Polunina},
title = {On~convergence of~numerical schemes when calculating {Riemann} problems for~shallow water equations},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {B171--B202},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a78/}
}
TY - JOUR AU - O. A. Kovyrkina AU - V. V. Ostapenko AU - E. I. Polunina TI - On convergence of numerical schemes when calculating Riemann problems for shallow water equations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - B171 EP - B202 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a78/ LA - en ID - SEMR_2024_21_2_a78 ER -
%0 Journal Article %A O. A. Kovyrkina %A V. V. Ostapenko %A E. I. Polunina %T On convergence of numerical schemes when calculating Riemann problems for shallow water equations %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P B171-B202 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a78/ %G en %F SEMR_2024_21_2_a78
O. A. Kovyrkina; V. V. Ostapenko; E. I. Polunina. On convergence of numerical schemes when calculating Riemann problems for shallow water equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B171-B202. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a78/
[1] S.K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics”, Mat. Sb., Nov. Ser., 47:3 (1959), 271–306 | MR | Zbl
[2] B. Cockburn, C.-W. Shu, “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems”, J. Sci. Comput., 16:3 (2001), 173–261 | DOI | MR | Zbl
[3] Chapman Hall/CRC, Boca Raton, 2001 | DOI | MR | Zbl
[4] R.J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl
[5] E.F. Toro, Riemann solvers and numerical methods for fluid dynamics. A practical introduction, Springer, Berlin, 2009 | DOI | MR | Zbl
[6] V.M. Goloviznin, M.A. Zaitsev, S.A. Karabasov, I.A. Korotkin, New algorithms of computational hydrodynamics for multiprocessor computing complexes, MSU, M., 2013
[7] J.S. Hesthaven, Numerical methods for conservation laws. From analysis to algorithms, SIAM, Philadelphia, 2018 | DOI | MR | Zbl
[8] C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes”, Acta Numerica, 29 (2020), 701–762 | DOI | MR | Zbl
[9] B. van Leer, “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | Zbl
[10] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:3 (1983), 357–393 | DOI | MR | Zbl
[11] A. Harten., S. Osher, “Uniformly high-order accurate nonoscillatory schemes. I”, SIAM J. Numer. Anal., 24:2 (1987), 279–309 | DOI | MR | Zbl
[12] H. Nessyahu, E. Tadmor, “Non-oscillatory central differencing for hyperbolic conservation laws”, J. Comput. Phys., 87:2 (1990), 408–463 | DOI | MR | Zbl
[13] G.-S. Jiang, C.-W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl
[14] S.A. Karabasov., V.M. Goloviznin, “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comput. Phys., 228:19 (2009), 7426–7451 | DOI | MR | Zbl
[15] V.V. Ostapenko, “Convergence of finite-difference schemes behind a shock front”, Comput. Math. Math. Phys., 37:10 (1997), 1161–1172 | MR | Zbl
[16] J. Casper, M.H. Carpenter, “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19:3 (1998), 813–828 | DOI | MR | Zbl
[17] B. Engquist, B. Sjögreen, “The convergence rate of finite difference schemes in the presence of shocks”, SIAM J. Numer. Anal., 35:6 (1998), 2464–2485 | DOI | MR | Zbl
[18] O.A. Kovyrkina, V.V. Ostapenko, “On the convergence of shock-capturing difference schemes”, Dokl. Math., 82:1 (2010), 599–603 | DOI | MR | Zbl
[19] R.W. MacCormack, AIAA Hypervelocity Impact Conference in Cincinnati, AIAA Paper 69–354 (Ohio, 1969) | DOI
[20] V.V. Rusanov, “Difference schemes of third order accuracy for the through calculation of discontinuous solutions”, Sov. Math., Dokl., 9 (1968), 771–774 | MR | Zbl
[21] S.Z. Burstein, A.A. Mirin, “Third order difference methods for hyperbolic equations”, J. Comput. Phys., 5:3 (1970), 547–571 | DOI | MR | Zbl
[22] M.E. Ladonkina, O.A. Neklyudova, V.V. Ostapenko, V.F. Tishkin, “On the accuracy of discontinuous Galerkin method calculating gas-dynamic shock waves”, Dokl. Math., 107:2 (2023), 120–125 | DOI | MR | Zbl
[23] O.A. Kovyrkina, V.V. Ostapenko, “On the actual accuracy of shock capturing difference schemes”, Math. Models Comput. Simul., 6:2 (2014), 183–191 | DOI | MR
[24] N.A. Mikhailov, “The convergence order of WENO schemes behind a shock front”, Math. Models Comput. Simul., 7:5 (2015), 467–474 | DOI | MR
[25] O.A. Kovyrkina, V.V. Ostapenko, “On monotonicity and accuracy of CABARET scheme for calculation of weak solutions with shocks”, Computational technologies, 23:2 (2018), 37–54 | DOI | MR
[26] M.E. Ladonkina, O.A. Neklyudova, V.V. Ostapenko, V.F. Tishkin, “On the accuracy of the discontinuous Galerkin method in calculation of shock waves”, Comput. Math. Math. Phys., 58:8 (2018), 1344–1353 | DOI | MR | Zbl
[27] O.A. Kovyrkina, V.V. Ostapenko, “Accuracy of MUSCL-type schemes in shock wave calculations”, Dokl. Math., 101:3 (2020), 209–213 | DOI | MR | Zbl
[28] M.D. Bragin, B.V. Rogov, “On the accuracy of bicompact schemes as applied to computation of unsteady shock waves”, Comput. Math. Math. Phys., 60:5 (2020), 864–878 | DOI | MR | Zbl
[29] O.A. Kovyrkina, A.A. Kurganov, V.V. Ostapenko, “Comparative analysis of the accuracy of three different schemes in the calculation of shock waves”, Math. Models Comput. Simul., 15:3 (2023), 401–414 | DOI | MR
[30] S. Chu, O.A. Kovyrkina, A. Kurganov, V.V. Ostapenko, “Experimental convergence rate study for three shock-capturing schemes and development of highly accurate combined schemes”, Numer. Methods Partial Differ. Equ., 39:6 (2023), 4317–4346 | DOI | MR | Zbl
[31] V.V. Ostapenko, “Construction of high order accurate shock-capturing finite difference schemes for unsteady shock waves”, Comput. Math. Math. Phys., 40:12 (2000), 1784–1800 | MR | Zbl
[32] P. Lax, B. Wendroff, “Systems of conservation laws”, Commun. Pure Appl. Math., 13:2 (1960), 217–237 | DOI | MR | Zbl
[33] M.D. Bragin, O.A. Kovyrkina, M.E. Ladonkina, V.V. Ostapenko, V.F. Tishkin, N.A. Khandeeva, “Combined numerical schemes”, Comput. Math. Math. Phys., 62:11 (2022), 1743–1781 | DOI | MR | Zbl
[34] O.A. Kovyrkina, V.V. Ostapenko, “On the construction of combined finite-difference schemes of high accuracy”, Dokl. Math., 97:1 (2018), 77–81 | DOI | MR | Zbl
[35] N.A. Zyuzina, O.A. Kovyrkina, V.V. Ostapenko, “Monotone finite-difference scheme preserving high accuracy in regions of shock influence”, Dokl. Math., 98:2 (2018), 506–510 | DOI | MR | Zbl
[36] M.E. Ladonkina, O.A. Neklyudova, V.V. Ostapenko, V.F. Tishkin, “Combined DG scheme that maintains increased accuracy in shock wave areas”, Dokl. Math., 100:3 (2019), 519–523 | DOI | MR | Zbl
[37] A. Gelb, E. Tadmor, “Adaptive edge detectors for piecewise smooth data based on the minmod limiter”, J. Sci. Comput., 28:2-3 (2006), 279–306 | DOI | MR | Zbl
[38] J.-L. Guermond., R. Pasquetti, B. Popov, “Entropy viscosity method for nonlinear conservation laws”, J. Comput. Phys., 230:11 (2011), 4248–4267 | DOI | MR | Zbl
[39] J. Dewar, A. Kurganov, M. Leopold, “Pressure-based adaption indicator for compressible Euler equations”, Numer. Methods Partial Differ. Equ., 31:6 (2015), 1844–1874 | DOI | MR | Zbl
[40] B.-S. Wang, W.S. Don, A. Kurganov, Y. Liu, “Fifth-order A-WENO schemes based on the adaptive diffusion central-upwind Rankine-Hugoniot fluxes”, Commun. Appl. Math. Comput., 5:1 (2023), 295–314 | DOI | MR | Zbl
[41] P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM, Philadelphia, 1973 | DOI | MR | Zbl
[42] A. Harten, “On a class of high resolution total-variation-stable finite-difference schemes”, SIAM J. Numer. Analis, 21:1 (1984), 1–23 | DOI | MR | Zbl
[43] A. Harten, J.M. Hyman, P.D. Lax, B. Keyfitz, “On finite-difference approximations and entropy conditions for shocks”, Commun. Pure Appl. Math., 29:3 (1976), 297–322 | DOI | MR | Zbl
[44] V.V. Ostapenko, “On the strong monotonicity of nonlinear difference schemes”, Comput. Math. Math. Phys., 38:7 (1998), 1119–1133 | MR | Zbl
[45] X.-D. Liu, E. Tadmor, “Third order nonoscillatory central scheme for hyperbolic conservation laws”, Numer. Math., 79:3 (1998), 397–425 | DOI | MR