On convergence of numerical schemes when calculating Riemann problems for shallow water equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B171-B202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the convergence of four high order numerical schemes when calculating Riemann problems for shallow water equations. We compare a couple of the NFC (Nonlinear Flux Correction) schemes: the second order TVD (Total Variation Diminishing) and the fifth-order in space, the third-order in time A-WENO (Alternative Weighted Essentially Non-Oscillatory) with a couple of the third-order QL (Quasi-Linear) schemes: RBM (Rusanov–Burstein–Mirin) and CWA (Compact high order Weak Approxiation), where nonlinear flux correction is not applied. It is shown that inside the shock influence areas for the NFC schemes, unlike the QL schemes, there is no uniform local convergence of the numerical solution to the exact constant one. At the same time, inside the centered rarefaction waves, solutions of these schemes with different orders converge to the different invariants of the exact solution: with the first order to the invariant that transferred along the characteristics outgoing from the center of the rarefaction wave; and with the order not lower than the second to the invariant that is constant inside the rarefaction wave. For numerical solutions of the studied schemes we perform the classification of various types of convergence to the corresponding exact solutions of the calculated Riemann problems.
Keywords: high-accuracy numerical schemes, Riemann problems for shallow water equations, local convergence of numerical solutions.
@article{SEMR_2024_21_2_a78,
     author = {O. A. Kovyrkina and V. V. Ostapenko and E. I. Polunina},
     title = {On~convergence of~numerical schemes when calculating {Riemann} problems for~shallow water equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {B171--B202},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a78/}
}
TY  - JOUR
AU  - O. A. Kovyrkina
AU  - V. V. Ostapenko
AU  - E. I. Polunina
TI  - On convergence of numerical schemes when calculating Riemann problems for shallow water equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - B171
EP  - B202
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a78/
LA  - en
ID  - SEMR_2024_21_2_a78
ER  - 
%0 Journal Article
%A O. A. Kovyrkina
%A V. V. Ostapenko
%A E. I. Polunina
%T On convergence of numerical schemes when calculating Riemann problems for shallow water equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P B171-B202
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a78/
%G en
%F SEMR_2024_21_2_a78
O. A. Kovyrkina; V. V. Ostapenko; E. I. Polunina. On convergence of numerical schemes when calculating Riemann problems for shallow water equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B171-B202. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a78/

[1] S.K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics”, Mat. Sb., Nov. Ser., 47:3 (1959), 271–306 | MR | Zbl

[2] B. Cockburn, C.-W. Shu, “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems”, J. Sci. Comput., 16:3 (2001), 173–261 | DOI | MR | Zbl

[3] Chapman Hall/CRC, Boca Raton, 2001 | DOI | MR | Zbl

[4] R.J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl

[5] E.F. Toro, Riemann solvers and numerical methods for fluid dynamics. A practical introduction, Springer, Berlin, 2009 | DOI | MR | Zbl

[6] V.M. Goloviznin, M.A. Zaitsev, S.A. Karabasov, I.A. Korotkin, New algorithms of computational hydrodynamics for multiprocessor computing complexes, MSU, M., 2013

[7] J.S. Hesthaven, Numerical methods for conservation laws. From analysis to algorithms, SIAM, Philadelphia, 2018 | DOI | MR | Zbl

[8] C.-W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory schemes”, Acta Numerica, 29 (2020), 701–762 | DOI | MR | Zbl

[9] B. van Leer, “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI | Zbl

[10] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:3 (1983), 357–393 | DOI | MR | Zbl

[11] A. Harten., S. Osher, “Uniformly high-order accurate nonoscillatory schemes. I”, SIAM J. Numer. Anal., 24:2 (1987), 279–309 | DOI | MR | Zbl

[12] H. Nessyahu, E. Tadmor, “Non-oscillatory central differencing for hyperbolic conservation laws”, J. Comput. Phys., 87:2 (1990), 408–463 | DOI | MR | Zbl

[13] G.-S. Jiang, C.-W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126:1 (1996), 202–228 | DOI | MR | Zbl

[14] S.A. Karabasov., V.M. Goloviznin, “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comput. Phys., 228:19 (2009), 7426–7451 | DOI | MR | Zbl

[15] V.V. Ostapenko, “Convergence of finite-difference schemes behind a shock front”, Comput. Math. Math. Phys., 37:10 (1997), 1161–1172 | MR | Zbl

[16] J. Casper, M.H. Carpenter, “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comput., 19:3 (1998), 813–828 | DOI | MR | Zbl

[17] B. Engquist, B. Sjögreen, “The convergence rate of finite difference schemes in the presence of shocks”, SIAM J. Numer. Anal., 35:6 (1998), 2464–2485 | DOI | MR | Zbl

[18] O.A. Kovyrkina, V.V. Ostapenko, “On the convergence of shock-capturing difference schemes”, Dokl. Math., 82:1 (2010), 599–603 | DOI | MR | Zbl

[19] R.W. MacCormack, AIAA Hypervelocity Impact Conference in Cincinnati, AIAA Paper 69–354 (Ohio, 1969) | DOI

[20] V.V. Rusanov, “Difference schemes of third order accuracy for the through calculation of discontinuous solutions”, Sov. Math., Dokl., 9 (1968), 771–774 | MR | Zbl

[21] S.Z. Burstein, A.A. Mirin, “Third order difference methods for hyperbolic equations”, J. Comput. Phys., 5:3 (1970), 547–571 | DOI | MR | Zbl

[22] M.E. Ladonkina, O.A. Neklyudova, V.V. Ostapenko, V.F. Tishkin, “On the accuracy of discontinuous Galerkin method calculating gas-dynamic shock waves”, Dokl. Math., 107:2 (2023), 120–125 | DOI | MR | Zbl

[23] O.A. Kovyrkina, V.V. Ostapenko, “On the actual accuracy of shock capturing difference schemes”, Math. Models Comput. Simul., 6:2 (2014), 183–191 | DOI | MR

[24] N.A. Mikhailov, “The convergence order of WENO schemes behind a shock front”, Math. Models Comput. Simul., 7:5 (2015), 467–474 | DOI | MR

[25] O.A. Kovyrkina, V.V. Ostapenko, “On monotonicity and accuracy of CABARET scheme for calculation of weak solutions with shocks”, Computational technologies, 23:2 (2018), 37–54 | DOI | MR

[26] M.E. Ladonkina, O.A. Neklyudova, V.V. Ostapenko, V.F. Tishkin, “On the accuracy of the discontinuous Galerkin method in calculation of shock waves”, Comput. Math. Math. Phys., 58:8 (2018), 1344–1353 | DOI | MR | Zbl

[27] O.A. Kovyrkina, V.V. Ostapenko, “Accuracy of MUSCL-type schemes in shock wave calculations”, Dokl. Math., 101:3 (2020), 209–213 | DOI | MR | Zbl

[28] M.D. Bragin, B.V. Rogov, “On the accuracy of bicompact schemes as applied to computation of unsteady shock waves”, Comput. Math. Math. Phys., 60:5 (2020), 864–878 | DOI | MR | Zbl

[29] O.A. Kovyrkina, A.A. Kurganov, V.V. Ostapenko, “Comparative analysis of the accuracy of three different schemes in the calculation of shock waves”, Math. Models Comput. Simul., 15:3 (2023), 401–414 | DOI | MR

[30] S. Chu, O.A. Kovyrkina, A. Kurganov, V.V. Ostapenko, “Experimental convergence rate study for three shock-capturing schemes and development of highly accurate combined schemes”, Numer. Methods Partial Differ. Equ., 39:6 (2023), 4317–4346 | DOI | MR | Zbl

[31] V.V. Ostapenko, “Construction of high order accurate shock-capturing finite difference schemes for unsteady shock waves”, Comput. Math. Math. Phys., 40:12 (2000), 1784–1800 | MR | Zbl

[32] P. Lax, B. Wendroff, “Systems of conservation laws”, Commun. Pure Appl. Math., 13:2 (1960), 217–237 | DOI | MR | Zbl

[33] M.D. Bragin, O.A. Kovyrkina, M.E. Ladonkina, V.V. Ostapenko, V.F. Tishkin, N.A. Khandeeva, “Combined numerical schemes”, Comput. Math. Math. Phys., 62:11 (2022), 1743–1781 | DOI | MR | Zbl

[34] O.A. Kovyrkina, V.V. Ostapenko, “On the construction of combined finite-difference schemes of high accuracy”, Dokl. Math., 97:1 (2018), 77–81 | DOI | MR | Zbl

[35] N.A. Zyuzina, O.A. Kovyrkina, V.V. Ostapenko, “Monotone finite-difference scheme preserving high accuracy in regions of shock influence”, Dokl. Math., 98:2 (2018), 506–510 | DOI | MR | Zbl

[36] M.E. Ladonkina, O.A. Neklyudova, V.V. Ostapenko, V.F. Tishkin, “Combined DG scheme that maintains increased accuracy in shock wave areas”, Dokl. Math., 100:3 (2019), 519–523 | DOI | MR | Zbl

[37] A. Gelb, E. Tadmor, “Adaptive edge detectors for piecewise smooth data based on the minmod limiter”, J. Sci. Comput., 28:2-3 (2006), 279–306 | DOI | MR | Zbl

[38] J.-L. Guermond., R. Pasquetti, B. Popov, “Entropy viscosity method for nonlinear conservation laws”, J. Comput. Phys., 230:11 (2011), 4248–4267 | DOI | MR | Zbl

[39] J. Dewar, A. Kurganov, M. Leopold, “Pressure-based adaption indicator for compressible Euler equations”, Numer. Methods Partial Differ. Equ., 31:6 (2015), 1844–1874 | DOI | MR | Zbl

[40] B.-S. Wang, W.S. Don, A. Kurganov, Y. Liu, “Fifth-order A-WENO schemes based on the adaptive diffusion central-upwind Rankine-Hugoniot fluxes”, Commun. Appl. Math. Comput., 5:1 (2023), 295–314 | DOI | MR | Zbl

[41] P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM, Philadelphia, 1973 | DOI | MR | Zbl

[42] A. Harten, “On a class of high resolution total-variation-stable finite-difference schemes”, SIAM J. Numer. Analis, 21:1 (1984), 1–23 | DOI | MR | Zbl

[43] A. Harten, J.M. Hyman, P.D. Lax, B. Keyfitz, “On finite-difference approximations and entropy conditions for shocks”, Commun. Pure Appl. Math., 29:3 (1976), 297–322 | DOI | MR | Zbl

[44] V.V. Ostapenko, “On the strong monotonicity of nonlinear difference schemes”, Comput. Math. Math. Phys., 38:7 (1998), 1119–1133 | MR | Zbl

[45] X.-D. Liu, E. Tadmor, “Third order nonoscillatory central scheme for hyperbolic conservation laws”, Numer. Math., 79:3 (1998), 397–425 | DOI | MR