@article{SEMR_2024_21_2_a77,
author = {K. V. Demyanko and Yu. M. Nechepurenko and G. V. Zasko},
title = {Integral criteria for the dichotomy quality in boundary-layer stability problems},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {B155--B170},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a77/}
}
TY - JOUR AU - K. V. Demyanko AU - Yu. M. Nechepurenko AU - G. V. Zasko TI - Integral criteria for the dichotomy quality in boundary-layer stability problems JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - B155 EP - B170 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a77/ LA - en ID - SEMR_2024_21_2_a77 ER -
%0 Journal Article %A K. V. Demyanko %A Yu. M. Nechepurenko %A G. V. Zasko %T Integral criteria for the dichotomy quality in boundary-layer stability problems %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P B155-B170 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a77/ %G en %F SEMR_2024_21_2_a77
K. V. Demyanko; Yu. M. Nechepurenko; G. V. Zasko. Integral criteria for the dichotomy quality in boundary-layer stability problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B155-B170. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a77/
[1] S.K. Godunov, O.P. Kirilyuk, V.I. Kostin, Spectral portraits of matrices, Preprint No 3, Inst. Mat. Sib. Otd. Akad. Nauk SSSR, 1990
[2] S.K. Godunov, Modern Aspects of Linear Algebra, Amer. Math. Society, Providence, 1998 | MR | Zbl
[3] L.N. Trefethen, “Pseudospectra of matrices”, Numerical analysis 1991, Proceedings of the 14th Dundee conference (June 25-28, 1991, Dundee, UK), Pitman Res. Notes Math. Ser., 260, 1992, 234–266 | MR | Zbl
[4] L.N. Trefethen, M. Embree, Spectra and Pseudospectra: The Behavior of Non-normal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005 | MR | Zbl
[5] S.K. Godunov, “Problem of the dichotomy of the spectrum of a matrix”, Sib. Math. J., 27:5 (1986), 649–660 | DOI | MR | Zbl
[6] A.Ya. Bulgakov, S.K. Godunov, “Circular dichotomy of the spectrum of a matrix”, Sib. Math. J., 29:5 (1988), 734–744 | DOI | MR | Zbl
[7] S.K. Godunov, M. Sadkane, “Elliptic dichotomy of a matrix spectrum”, Linear Algebra Appl., 248 (1996), 205–232 | DOI | MR | Zbl
[8] S.K. Godunov, M. Sadkane, “Computation of pseudospectra via spectral projectors”, Linear Algebra Appl., 279 (1998), 163–175 | DOI | MR | Zbl
[9] Yu.M. Nechepurenko, “Integral criteria for the quality of the dichotomy of a matrix spectrum by a closed contour”, Math. Notes, 78:5 (2005), 669–676 | DOI | MR | Zbl
[10] K.V. Demyanko, Yu.M. Nechepurenko, G.V. Zasko, “Structured pseudospectra in problems of spatial stability of boundary layers”, Comput. Math. Math. Phys., 64:8 (2024), 1785–1795 | DOI | MR | Zbl
[11] H. Schlichting, K. Gersten, Boundary-Layer Theory, 9th ed., Springer, Berlin, 2016 | DOI | MR | Zbl
[12] G.H. Golub, C.F. van Loan, Matrix computations, 4th ed., The Johns Hopkins University Press, Baltimore, MD, 2013 | MR | Zbl
[13] D. Hinrichsen, B. Kelb, “Spectral value sets: a graphical tool for robustness analysis”, Syst. Control Lett., 21:2 (1993), 127–136 | DOI | MR | Zbl
[14] E. Gallestey, D. Hinrichsen, A.J. Pritchard, “Spectral value sets of closed linear operators”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 456 (2000), 1397–1418 | DOI | MR | Zbl
[15] Yu.M. Nechepurenko, “The regularly structured pseudospectrum”, Russ. J. Numer. Anal. Math. Model, 19:3 (2004), 265–268 | DOI | MR | Zbl
[16] A.V. Boiko, K.V. Demyanko, G.V. Zasko, Yu.M. Nechepurenko, “On the parabolization of equations for the propagation of small disturbances in two-dimensional boundary layers”, Termophys. Aeromech., 31 (2024), 393–410 | DOI
[17] G.V. Zasko, A.V. Boiko, K.V. Demyanko, Yu.M. Nechepurenko, “Simulating the propagation of boundary-layer disturbances by solving boundary-value and initial-value problems”, Russ. J. Num. Anal. Math. Model, 39:1 (2024), 47–59 | DOI | MR | Zbl
[18] A. Towne, T. Colonius, “One-way spatial integration of hyperbolic equations”, J. Comput. Phys., 300 (2015), 844–861 | DOI | MR | Zbl
[19] M. Zhu, A. Towne, “Recursive one-way Navier–Stokes equations with PSE-like cost”, J. Comput. Phys., 473 (2023), 111744 | DOI | MR | Zbl
[20] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in Single Domain, Springer, Berlin, 2006 | DOI | MR | Zbl
[21] J. Shen, “Stable and efficient spectral methods in unbounded domains using Laguerre functions”, SIAM J. Numer. Anal., 38:4 (2000), 1113–1133 | DOI | MR | Zbl
[22] J. Shen, L.-L. Wang, “Some recent advances on spectral methods for unbounded domains”, Commun. Comput. Phys., 5:2-4 (2009), 195–241 | MR | Zbl
[23] G.V. Zasko, “On spectral approximations for the stability analysis of boundary layers”, Comput. Math. Math. Phys., 65:1 (2025) (to appear) | DOI | MR
[24] A. Tumin, E. Reshotko, “Spatial theory of optimal disturbances in boundary layers”, Phys. Fluids, 13:7 (2001), 2097–2104 | DOI | MR | Zbl
[25] G.V. Zasko, Yu.M. Nechepurenko, “Spectral analysis of the optimal disturbances of stratified turbulent Couette flow”, Comput. Math. Math. Phys., 61:1 (2021), 129–141 | DOI | MR | Zbl