Integral criteria for the dichotomy quality in boundary-layer stability problems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B155-B170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work studies the sensitivity of spectral projectors in boundary-layer spatial stability problems to uncertainties of the main flow. It is proposed to use structured integral criteria for the dichotomy quality for this purpose. The presentation is based on an example of the flow of a viscous incompressible fluid over a slightly concave surface with flow parameters favorable for the development of the Görtler vortices and Tollmien–Schlichting waves.
Keywords: spectral projectors, structured pseudospectra, structured integral criteria for the dichotomy quality, structured resolvent, spatial stability problems, boundary layer, Görtler vortices, Tollmien–Schlichting waves.
@article{SEMR_2024_21_2_a77,
     author = {K. V. Demyanko and Yu. M. Nechepurenko and G. V. Zasko},
     title = {Integral criteria for the dichotomy quality in boundary-layer stability problems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {B155--B170},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a77/}
}
TY  - JOUR
AU  - K. V. Demyanko
AU  - Yu. M. Nechepurenko
AU  - G. V. Zasko
TI  - Integral criteria for the dichotomy quality in boundary-layer stability problems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - B155
EP  - B170
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a77/
LA  - en
ID  - SEMR_2024_21_2_a77
ER  - 
%0 Journal Article
%A K. V. Demyanko
%A Yu. M. Nechepurenko
%A G. V. Zasko
%T Integral criteria for the dichotomy quality in boundary-layer stability problems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P B155-B170
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a77/
%G en
%F SEMR_2024_21_2_a77
K. V. Demyanko; Yu. M. Nechepurenko; G. V. Zasko. Integral criteria for the dichotomy quality in boundary-layer stability problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B155-B170. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a77/

[1] S.K. Godunov, O.P. Kirilyuk, V.I. Kostin, Spectral portraits of matrices, Preprint No 3, Inst. Mat. Sib. Otd. Akad. Nauk SSSR, 1990

[2] S.K. Godunov, Modern Aspects of Linear Algebra, Amer. Math. Society, Providence, 1998 | MR | Zbl

[3] L.N. Trefethen, “Pseudospectra of matrices”, Numerical analysis 1991, Proceedings of the 14th Dundee conference (June 25-28, 1991, Dundee, UK), Pitman Res. Notes Math. Ser., 260, 1992, 234–266 | MR | Zbl

[4] L.N. Trefethen, M. Embree, Spectra and Pseudospectra: The Behavior of Non-normal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005 | MR | Zbl

[5] S.K. Godunov, “Problem of the dichotomy of the spectrum of a matrix”, Sib. Math. J., 27:5 (1986), 649–660 | DOI | MR | Zbl

[6] A.Ya. Bulgakov, S.K. Godunov, “Circular dichotomy of the spectrum of a matrix”, Sib. Math. J., 29:5 (1988), 734–744 | DOI | MR | Zbl

[7] S.K. Godunov, M. Sadkane, “Elliptic dichotomy of a matrix spectrum”, Linear Algebra Appl., 248 (1996), 205–232 | DOI | MR | Zbl

[8] S.K. Godunov, M. Sadkane, “Computation of pseudospectra via spectral projectors”, Linear Algebra Appl., 279 (1998), 163–175 | DOI | MR | Zbl

[9] Yu.M. Nechepurenko, “Integral criteria for the quality of the dichotomy of a matrix spectrum by a closed contour”, Math. Notes, 78:5 (2005), 669–676 | DOI | MR | Zbl

[10] K.V. Demyanko, Yu.M. Nechepurenko, G.V. Zasko, “Structured pseudospectra in problems of spatial stability of boundary layers”, Comput. Math. Math. Phys., 64:8 (2024), 1785–1795 | DOI | MR | Zbl

[11] H. Schlichting, K. Gersten, Boundary-Layer Theory, 9th ed., Springer, Berlin, 2016 | DOI | MR | Zbl

[12] G.H. Golub, C.F. van Loan, Matrix computations, 4th ed., The Johns Hopkins University Press, Baltimore, MD, 2013 | MR | Zbl

[13] D. Hinrichsen, B. Kelb, “Spectral value sets: a graphical tool for robustness analysis”, Syst. Control Lett., 21:2 (1993), 127–136 | DOI | MR | Zbl

[14] E. Gallestey, D. Hinrichsen, A.J. Pritchard, “Spectral value sets of closed linear operators”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 456 (2000), 1397–1418 | DOI | MR | Zbl

[15] Yu.M. Nechepurenko, “The regularly structured pseudospectrum”, Russ. J. Numer. Anal. Math. Model, 19:3 (2004), 265–268 | DOI | MR | Zbl

[16] A.V. Boiko, K.V. Demyanko, G.V. Zasko, Yu.M. Nechepurenko, “On the parabolization of equations for the propagation of small disturbances in two-dimensional boundary layers”, Termophys. Aeromech., 31 (2024), 393–410 | DOI

[17] G.V. Zasko, A.V. Boiko, K.V. Demyanko, Yu.M. Nechepurenko, “Simulating the propagation of boundary-layer disturbances by solving boundary-value and initial-value problems”, Russ. J. Num. Anal. Math. Model, 39:1 (2024), 47–59 | DOI | MR | Zbl

[18] A. Towne, T. Colonius, “One-way spatial integration of hyperbolic equations”, J. Comput. Phys., 300 (2015), 844–861 | DOI | MR | Zbl

[19] M. Zhu, A. Towne, “Recursive one-way Navier–Stokes equations with PSE-like cost”, J. Comput. Phys., 473 (2023), 111744 | DOI | MR | Zbl

[20] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in Single Domain, Springer, Berlin, 2006 | DOI | MR | Zbl

[21] J. Shen, “Stable and efficient spectral methods in unbounded domains using Laguerre functions”, SIAM J. Numer. Anal., 38:4 (2000), 1113–1133 | DOI | MR | Zbl

[22] J. Shen, L.-L. Wang, “Some recent advances on spectral methods for unbounded domains”, Commun. Comput. Phys., 5:2-4 (2009), 195–241 | MR | Zbl

[23] G.V. Zasko, “On spectral approximations for the stability analysis of boundary layers”, Comput. Math. Math. Phys., 65:1 (2025) (to appear) | DOI | MR

[24] A. Tumin, E. Reshotko, “Spatial theory of optimal disturbances in boundary layers”, Phys. Fluids, 13:7 (2001), 2097–2104 | DOI | MR | Zbl

[25] G.V. Zasko, Yu.M. Nechepurenko, “Spectral analysis of the optimal disturbances of stratified turbulent Couette flow”, Comput. Math. Math. Phys., 61:1 (2021), 129–141 | DOI | MR | Zbl