@article{SEMR_2024_21_2_a75,
author = {Alexander Malyshev},
title = {Summation-by-parts schemes for symmetric hyperbolic systems},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {B92--B125},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a75/}
}
Alexander Malyshev. Summation-by-parts schemes for symmetric hyperbolic systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B92-B125. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a75/
[1] F. Achleitner, A. Arnold, A. Jüngel, “Necessary and sufficient conditions for strong stability of explicit Runge-Kutta methods”, From Particle Systems to Partial Differential Equations, PSPDE 2022, Springer Proc. Math. Statistics, 465, eds. Carlen E., Gonçalves P., Soares A.J., Springer, Cham, 2024, 1–21 | DOI | MR
[2] S. Benzoni-Gavage, D. Serre, Multi-dimensional hyperbolic partial differential equations: First-order systems and applications, Oxford University Press, Oxford, 2007 | DOI | MR | Zbl
[3] M.H. Carpenter, D. Gottlieb, S. Abarbanel, “Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes”, J. Comput. Phys., 111:2 (1994), 220–236 | DOI | MR | Zbl
[4] M.H. Carpenter, J. Nordström, D. Gottlieb, “A stable and conservative interface treatment of arbitrary spatial accuracy”, J. Comput. Phys., 148:2 (1999), 341–365 | DOI | MR | Zbl
[5] D.C. Del Rey Fernandez, P.D. Boom, D.W. Zingg, “A generalized framework for nodal first derivative summation-by-parts operators”, J. Comput. Phys., 266 (2014), 214–239 | DOI | MR | Zbl
[6] D.C. Del Rey Fernandez, J.E. Hicken, D.W. Zingg, “Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations”, Comput. Fluids, 95 (2014), 171–196 | DOI | MR | Zbl
[7] K.O. Friedrichs, “Symmetric hyperbolic linear differential equations”, Comm. Pure Appl. Math., 7 (1954), 345–392 | DOI | MR | Zbl
[8] J. Glaubitz, J. Nordström, P. Öffner, “Summation-by-parts operators for general function spaces”, SIAM J. Numer. Anal., 61:2 (2023), 733–754 | DOI | MR | Zbl
[9] S.K. Godunov, Equations of mathematical physics, 2nd ed., Nauka, M., 1979 | MR
[10] B. Gustafsson, H.-O. Kreiss, J. Oliger, Time dependent problems and difference methods, Wiley, New York, 1995 | DOI | MR | Zbl
[11] E. Hairer, G. Wanner, Solving ordinary differential equations, v. II, Stiff and differential-algebraic problems, 2nd rev. ed., Springer, Berlin, 1996 | DOI | MR | Zbl
[12] R.A. Horn, C.R. Johnson, Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013 | DOI | MR | Zbl
[13] C.A. Kennedy, M.H. Carpenter, R.M. Lewis, “Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations”, Appl. Numer. Math., 35:3 (2000), 177–219 | DOI | MR | Zbl
[14] H.-O. Kreiss, G. Scherer, “Finite element and finite difference methods for hyperbolic partial differential equations”, Mathematical Aspects of Finite Elements in Partial Differential Equations, Proc. Symp. (Madison 1974), Academic Press, New York, 1974, 195–212 | DOI | Zbl
[15] H.-O. Kreiss, G. Scherer, On the existence of energy estimates for difference approximations for hyperbolic systems, manuscript, 1977 https://user.it.uu.se/k̃ot25782/fulltext/Scherer77.pdf
[16] H.-O. Kreiss, G. Scherer, “Method of lines for hyperbolic differential equations”, SIAM J. Numer. Anal., 29:3 (1992), 640–646 | DOI | MR | Zbl
[17] W.M. Kutta, “Beitrag zur näherungsweisen Integration totaler Differentialgleichungen”, Zeitschr. f. Math., 46 (1901), 435–453 https://archive.org/details/zeitschriftfrma12runggoog/page/434/mode/2up?view=theater | Zbl
[18] P.D. Lax, R.S. Phillips, “Local boundary conditions for dissipative symmetric linear differential operators”, Commun. Pure Appl. Math., 13 (1960), 427–455 | DOI | MR | Zbl
[19] P.D. Lax, R.D. Richtmyer, “Survey of the stability of linear finite difference equations”, Commun. Pure Appl. Math., 9:2 (1956), 267–293 | DOI | MR | Zbl
[20] J. Nordström, “Error bounded schemes for time-dependent hyperbolic problems”, SIAM J. Sci. Comput., 30:1 (2007), 46–59 | DOI | MR | Zbl
[21] H. Ranocha, P. Öffner, “$L_2$ stability of explicit Runge-Kutta schemes”, J. Sci. Comput., 75:2 (2018), 1040–1056 | DOI | MR | Zbl
[22] G. Scherer, On Energy estimates for difference approximations to hyperbolic partial differential equations, PhD Thesis, Uppsala Univ., Uppsala, Sweden, 1977 https://user.it.uu.se/k̃ot25782/fulltext/Scherer77.pdf
[23] Chi-Wang Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, J. Comput. Phys., 77:2 (1988), 439–471 | DOI | MR | Zbl
[24] B. Strand, “Summation by parts for finite difference approximations for $d/dx$”, J. Comput. Phys., 110:1 (1994), 47–67 | DOI | MR | Zbl
[25] Z. Sun, Chi-Wang Shu, “Stability of the fourth order Runge-Kutta method for time-dependent partial differential equations”, Ann. Math. Sci. Appl., 2:2 (2017), 255–284 | DOI | MR | Zbl
[26] M. Svärd, J. Nordström, “Review of summation-by-parts schemes for initial-boundary-value problems”, J. Comput. Phys., 268 (2014), 17–38 | DOI | MR | Zbl
[27] M. Svärd, J. Nordström, “On the convergence rates of energy-stable finite-difference schemes”, J. Comput. Physics, 397 (2019), 108819 | DOI | MR | Zbl
[28] E. Tadmor, “From semi-discrete to fully discrete: stability of Runge-Kutta schemes by the energy method. II”, Collected lectures on the preservation of stability under discretization, Lectures presented at the workshop (Colorado State University, Fort Collins, CO, USA, May 30-June 2, 2001), eds. Estep D. et al., SIAM, Philadelphia, 2002, 25–49 https://www.math.umd.edu/t̃admor/pub/linear-stability/Tadmor.SIAM-02.pdf | MR | Zbl
[29] E. Tadmor, Runge-Kutta methods are stable, 2023, arXiv: 2312.15546v1 | DOI