On the Gelfand problem and viscosity matrices for two-dimensional hyperbolic systems of conservation laws
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B78-B91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present counter-intuitive examples of viscous regularizations of a two-dimensional strictly hyperbolic systems of conservation laws. The regularizations are obtained using two different viscosity matrices. While for both of the constructed “viscous” systems waves propagating in either $x$- or $y$-directions are stable, oblique waves may be linearly unstable. Numerical simulations fully corroborate these analytical results. To the best of our knowledge, this is the first nontrivial result related to the multidimensional Gelfand problem with non-symmetric fluxes and diffusion terms. Our conjectures provide direct answer to Gelfand's problem both in one- and multi-dimensional cases.
Keywords: Viscosity matrices, hyperbolic systems of conservation laws, Saint-Venant system of shallow water equations.
@article{SEMR_2024_21_2_a74,
     author = {S. Chu and I. Kliakhandler and A. Kurganov},
     title = {On the {Gelfand} problem and viscosity matrices for two-dimensional hyperbolic systems of conservation laws},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {B78--B91},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a74/}
}
TY  - JOUR
AU  - S. Chu
AU  - I. Kliakhandler
AU  - A. Kurganov
TI  - On the Gelfand problem and viscosity matrices for two-dimensional hyperbolic systems of conservation laws
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - B78
EP  - B91
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a74/
LA  - en
ID  - SEMR_2024_21_2_a74
ER  - 
%0 Journal Article
%A S. Chu
%A I. Kliakhandler
%A A. Kurganov
%T On the Gelfand problem and viscosity matrices for two-dimensional hyperbolic systems of conservation laws
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P B78-B91
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a74/
%G en
%F SEMR_2024_21_2_a74
S. Chu; I. Kliakhandler; A. Kurganov. On the Gelfand problem and viscosity matrices for two-dimensional hyperbolic systems of conservation laws. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B78-B91. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a74/

[1] S. Bianchini, A. Bressan, “Vanishing viscosity solutions of nonlinear hyperbolic systems”, Ann. Math. (2), 161:1 (2005), 223–342 | DOI | MR | Zbl

[2] S. Chu, O. Kovyrkina, A. Kurganov, V. Ostapenko, “Experimental convergence rate study for three shock-capturing schemes and development of highly accurate combined schemes”, Numer. Methods Partial Differ. Equations, 39:6 (2023), 4317–4346 | DOI | MR | Zbl

[3] S. Chu, A. Kurganov, M. Na, “Fifth-order A-WENO schemes based on the path-conservative central-upwind method”, J. Comput. Phys., 469 (2022), 111508, 22 pp. | DOI | MR | Zbl

[4] A.J.C. De Saint-Venant, “Theòrie du mouvement non-permanent des eaux avec application aux crues des rivèrs et à l'introduntion des Marees dans leur lit”, C.R. Acad. Sci., Paris, 73 (1871), 147–154 http://gallica.bnf.fr/ark:/12148/bpt6k3030d.f147

[5] I.M. Gelfand, “Some problems of the theory of quasilinear equations”, Usp. Mat. Nauk, 14:2 (1959), 87–158 | MR | Zbl

[6] S. Gottlieb, D. Ketcheson, C.-W. Shu, Strong stability preserving Runge-Kutta and multistep time discretizations, World Scientific, Hackensack, NJ, 2011 http://ebooks.worldscinet.com/ISBN/9789814289276/toc.shtml | MR | Zbl

[7] S. Gottlieb, C.-W. Shu, E. Tadmor, “Strong stability-preserving high-order time discretization methods”, SIAM Rev., 43:1 (2001), 89–112 | DOI | MR | Zbl

[8] I. Kliakhandler, “Long interfacial waves in multilayer thin films and coupled Kuramoto-Sivashinsky equations”, J. Fluid Mech., 391 (1999), 45–65 | DOI | MR | Zbl

[9] A. Majda, R. Pego, “Stable viscosity matrices for systems of conservation laws”, J. Differ. Equation, 56:2 (1985), 229–262 | DOI | MR | Zbl

[10] Y. Shizuta, S. Kawashima, “Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation”, Hokkaido Math. J., 14:2 (1985), 249–275 | DOI | MR | Zbl