@article{SEMR_2024_21_2_a74,
author = {S. Chu and I. Kliakhandler and A. Kurganov},
title = {On the {Gelfand} problem and viscosity matrices for two-dimensional hyperbolic systems of conservation laws},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {B78--B91},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a74/}
}
TY - JOUR AU - S. Chu AU - I. Kliakhandler AU - A. Kurganov TI - On the Gelfand problem and viscosity matrices for two-dimensional hyperbolic systems of conservation laws JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - B78 EP - B91 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a74/ LA - en ID - SEMR_2024_21_2_a74 ER -
%0 Journal Article %A S. Chu %A I. Kliakhandler %A A. Kurganov %T On the Gelfand problem and viscosity matrices for two-dimensional hyperbolic systems of conservation laws %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P B78-B91 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a74/ %G en %F SEMR_2024_21_2_a74
S. Chu; I. Kliakhandler; A. Kurganov. On the Gelfand problem and viscosity matrices for two-dimensional hyperbolic systems of conservation laws. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B78-B91. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a74/
[1] S. Bianchini, A. Bressan, “Vanishing viscosity solutions of nonlinear hyperbolic systems”, Ann. Math. (2), 161:1 (2005), 223–342 | DOI | MR | Zbl
[2] S. Chu, O. Kovyrkina, A. Kurganov, V. Ostapenko, “Experimental convergence rate study for three shock-capturing schemes and development of highly accurate combined schemes”, Numer. Methods Partial Differ. Equations, 39:6 (2023), 4317–4346 | DOI | MR | Zbl
[3] S. Chu, A. Kurganov, M. Na, “Fifth-order A-WENO schemes based on the path-conservative central-upwind method”, J. Comput. Phys., 469 (2022), 111508, 22 pp. | DOI | MR | Zbl
[4] A.J.C. De Saint-Venant, “Theòrie du mouvement non-permanent des eaux avec application aux crues des rivèrs et à l'introduntion des Marees dans leur lit”, C.R. Acad. Sci., Paris, 73 (1871), 147–154 http://gallica.bnf.fr/ark:/12148/bpt6k3030d.f147
[5] I.M. Gelfand, “Some problems of the theory of quasilinear equations”, Usp. Mat. Nauk, 14:2 (1959), 87–158 | MR | Zbl
[6] S. Gottlieb, D. Ketcheson, C.-W. Shu, Strong stability preserving Runge-Kutta and multistep time discretizations, World Scientific, Hackensack, NJ, 2011 http://ebooks.worldscinet.com/ISBN/9789814289276/toc.shtml | MR | Zbl
[7] S. Gottlieb, C.-W. Shu, E. Tadmor, “Strong stability-preserving high-order time discretization methods”, SIAM Rev., 43:1 (2001), 89–112 | DOI | MR | Zbl
[8] I. Kliakhandler, “Long interfacial waves in multilayer thin films and coupled Kuramoto-Sivashinsky equations”, J. Fluid Mech., 391 (1999), 45–65 | DOI | MR | Zbl
[9] A. Majda, R. Pego, “Stable viscosity matrices for systems of conservation laws”, J. Differ. Equation, 56:2 (1985), 229–262 | DOI | MR | Zbl
[10] Y. Shizuta, S. Kawashima, “Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation”, Hokkaido Math. J., 14:2 (1985), 249–275 | DOI | MR | Zbl