Application of a two-dimensional version of the linearized Godunov scheme to the numerical simulation of the Kolmogorov problem for a liquid polymer solution
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B64-B77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical technique is proposed for modeling the flow of viscous polymer solutions and studying the phenomenon of elastic turbulence. The method is a hybridization of the numerical methods of two-dimensional linearized Godunov scheme and the Kurganov-Tadmor method. Linearized Godunov scheme was used to approximate the hydrodynamic part of the equations of a polymer solution dynamics, and is a two-dimensional method of S.K. Godunov with linear discontinuity decays, which provides guaranteed non-decreasing entropy. The flow of a Kolmogorov type polymer solution in a periodic square cell, pumped by an external periodic force and characterized by the Reynolds number $Re \sim 10^{-1}$, is investigated. The instability of the flow is obtained, the transition to the elastic turbulence regime is investigated. The spectral characteristics of the turbulent flow are constructed, and the power-law slope of the inertial interval is estimated.
Keywords: numerical modeling, elastic turbulence, hydrodynamic instability, Kolmogorov flow, numerical Godunov method.
@article{SEMR_2024_21_2_a73,
     author = {V. V. Denisenko and S. V. Fortova},
     title = {Application of a two-dimensional version of the linearized {Godunov} scheme to the numerical simulation of the {Kolmogorov} problem for a liquid polymer solution},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {B64--B77},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a73/}
}
TY  - JOUR
AU  - V. V. Denisenko
AU  - S. V. Fortova
TI  - Application of a two-dimensional version of the linearized Godunov scheme to the numerical simulation of the Kolmogorov problem for a liquid polymer solution
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - B64
EP  - B77
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a73/
LA  - en
ID  - SEMR_2024_21_2_a73
ER  - 
%0 Journal Article
%A V. V. Denisenko
%A S. V. Fortova
%T Application of a two-dimensional version of the linearized Godunov scheme to the numerical simulation of the Kolmogorov problem for a liquid polymer solution
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P B64-B77
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a73/
%G en
%F SEMR_2024_21_2_a73
V. V. Denisenko; S. V. Fortova. Application of a two-dimensional version of the linearized Godunov scheme to the numerical simulation of the Kolmogorov problem for a liquid polymer solution. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B64-B77. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a73/

[1] V. Steinberg, “Elastic turbulence: an experimental view on inertialess random flow”, Annual review of fluid mechanics, 53, eds. Moin P. et al., 2021, 27–58 | DOI | Zbl

[2] A. Shahmardi, S. Zade, M.N. Ardekani, R.J. Poole, F. Lundell, M.E. Rosti, L. Brandt, “Turbulent duct flow with polymers”, J. Fluid Mech., 859 (2019), 1057–1083 | DOI | MR | Zbl

[3] J.G. Oldroyd, “On the formulation of rheological equations of state”, Proc. R. Soc. Lond. Ser. A, 200:1063 (1950), 523–541 https://www.jstor.org/stable/98422 | DOI | Zbl

[4] A. Peterlin, “Streaming birefringence of soft linear macromolecules with finite chain length”, Polymer, 2 (1961), 257–264 | DOI

[5] M.A. Alves, P.J. Oliveira, F.T. Pinho, “Numerical methods for viscoelastic fluid flows”, Annual review of fluid mechanics, 53, eds. Moin P. et al., 2021, 509–541 | DOI | Zbl

[6] S.K. Godunov, V.V. Denisenko, D.V. Klyuchinskii, S.V. Fortova, V.V. Shepelev, “Study of entropy properties of a linearized version of Godunov's method”, Comput. Math. Math. Phys., 60:4 (2020), 628–640 | DOI | MR | Zbl

[7] A. Kurganov, E. Tadmor, “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations”, J. Comput. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl

[8] S.K. Godunov, D.V. Klyuchinskii, S.V. Fortova, V.V. Shepelev, “Experimental studies of difference gas dynamics models with shock waves”, Comput. Math. Math. Phys., 58:8 (2018), 1201–1216 | DOI | MR | Zbl

[9] V.V. Denisenko, S.V. Fortova, “Numerical simulation of elastic turbulence in a confined two-dimensional cell”, J. Appl. Ind. Math., 17:1 (2023), 43–50 | DOI | MR | Zbl

[10] L.D. Landau, E.M. Lifshitz, Theoretical physics, v. VI, Gydrodynamics, 3-e izd., Nauka, M., 1986 | MR | Zbl