@article{SEMR_2024_21_2_a73,
author = {V. V. Denisenko and S. V. Fortova},
title = {Application of a two-dimensional version of the linearized {Godunov} scheme to the numerical simulation of the {Kolmogorov} problem for a liquid polymer solution},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {B64--B77},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a73/}
}
TY - JOUR AU - V. V. Denisenko AU - S. V. Fortova TI - Application of a two-dimensional version of the linearized Godunov scheme to the numerical simulation of the Kolmogorov problem for a liquid polymer solution JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - B64 EP - B77 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a73/ LA - en ID - SEMR_2024_21_2_a73 ER -
%0 Journal Article %A V. V. Denisenko %A S. V. Fortova %T Application of a two-dimensional version of the linearized Godunov scheme to the numerical simulation of the Kolmogorov problem for a liquid polymer solution %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P B64-B77 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a73/ %G en %F SEMR_2024_21_2_a73
V. V. Denisenko; S. V. Fortova. Application of a two-dimensional version of the linearized Godunov scheme to the numerical simulation of the Kolmogorov problem for a liquid polymer solution. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B64-B77. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a73/
[1] V. Steinberg, “Elastic turbulence: an experimental view on inertialess random flow”, Annual review of fluid mechanics, 53, eds. Moin P. et al., 2021, 27–58 | DOI | Zbl
[2] A. Shahmardi, S. Zade, M.N. Ardekani, R.J. Poole, F. Lundell, M.E. Rosti, L. Brandt, “Turbulent duct flow with polymers”, J. Fluid Mech., 859 (2019), 1057–1083 | DOI | MR | Zbl
[3] J.G. Oldroyd, “On the formulation of rheological equations of state”, Proc. R. Soc. Lond. Ser. A, 200:1063 (1950), 523–541 https://www.jstor.org/stable/98422 | DOI | Zbl
[4] A. Peterlin, “Streaming birefringence of soft linear macromolecules with finite chain length”, Polymer, 2 (1961), 257–264 | DOI
[5] M.A. Alves, P.J. Oliveira, F.T. Pinho, “Numerical methods for viscoelastic fluid flows”, Annual review of fluid mechanics, 53, eds. Moin P. et al., 2021, 509–541 | DOI | Zbl
[6] S.K. Godunov, V.V. Denisenko, D.V. Klyuchinskii, S.V. Fortova, V.V. Shepelev, “Study of entropy properties of a linearized version of Godunov's method”, Comput. Math. Math. Phys., 60:4 (2020), 628–640 | DOI | MR | Zbl
[7] A. Kurganov, E. Tadmor, “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations”, J. Comput. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl
[8] S.K. Godunov, D.V. Klyuchinskii, S.V. Fortova, V.V. Shepelev, “Experimental studies of difference gas dynamics models with shock waves”, Comput. Math. Math. Phys., 58:8 (2018), 1201–1216 | DOI | MR | Zbl
[9] V.V. Denisenko, S.V. Fortova, “Numerical simulation of elastic turbulence in a confined two-dimensional cell”, J. Appl. Ind. Math., 17:1 (2023), 43–50 | DOI | MR | Zbl
[10] L.D. Landau, E.M. Lifshitz, Theoretical physics, v. VI, Gydrodynamics, 3-e izd., Nauka, M., 1986 | MR | Zbl