Application of linear fractional transformation in problems of localization of matrix spectra and roots of polynomials
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B46-B63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper investigates the possibilities of using linear fractional transformations in a number of problems that can be reduced to spectral dichotomy. More specifically, for the dichotomy of the imaginary axis, estimates are given for areas containing eigenvalues, methods for determining the absence of a matrix spectrum on a ray and a segment are described. A method for dividing a polynomial into two factors whose roots lie in the right and left half-planes is described and substantiated.
Keywords: spectrum dichotomy, linear fractional transformation, factorization of a polynomial.
@article{SEMR_2024_21_2_a72,
     author = {E. A. Biberdorf and L. Wang},
     title = {Application of linear fractional transformation in problems of localization of matrix spectra and roots of polynomials},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {B46--B63},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a72/}
}
TY  - JOUR
AU  - E. A. Biberdorf
AU  - L. Wang
TI  - Application of linear fractional transformation in problems of localization of matrix spectra and roots of polynomials
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - B46
EP  - B63
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a72/
LA  - en
ID  - SEMR_2024_21_2_a72
ER  - 
%0 Journal Article
%A E. A. Biberdorf
%A L. Wang
%T Application of linear fractional transformation in problems of localization of matrix spectra and roots of polynomials
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P B46-B63
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a72/
%G en
%F SEMR_2024_21_2_a72
E. A. Biberdorf; L. Wang. Application of linear fractional transformation in problems of localization of matrix spectra and roots of polynomials. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B46-B63. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a72/

[1] S.K. Godunov, A.G. Antonov, O.P. Kirilyuk, V.I. Kostin, Guaranteed precision in the solution of systems of linear equations in Euclidean spaces, Nauka, Novosibirsk, 1988 | MR | Zbl

[2] S.K. Godunov, Modern aspects of linear algebra, American Mathematical Society, Providence, 1998 | MR | Zbl

[3] A.Ya. Bulgakov, S.K. Godunov, “Calculation of positive definite solutions of the Lyapunov equation”, Trudy Inst. Mat. Sib. Otd. AN SSSR, 6 (1985), 17–38 | MR | Zbl

[4] E.A. Biberdorf, A.S. Rudometova, W. Li, A.D. Jumabaev, “A method for separating the matrix spectrum by a straight line and an infinite strip flutter problem”, Comput. Math. Math. Phys., 64:8 (2024), 1704–1714 | DOI | MR | Zbl

[5] A.Ya. Bulgakov, S.K. Godunov, “Circular dichotomy of a matrix spectrum”, Sib. Math. J., 29:5 (1988), 734–744 | DOI | MR | Zbl

[6] S.K. Godunov, M. Sadkane, “Some new algorithms for the spectral dichotomy methods”, Linear Algebra Appl., 358:1-3 (2003), 173–194 | DOI | MR | Zbl

[7] A.N. Malyshev, “Computing invariant subspaces of a regular linear pencil of matrices”, Sib. Math. J., 30:4 (1989), 559–567 | DOI | MR | Zbl

[8] E.A. Biberdorf, “A criterion of dichotomy of roots of a polynomial by the unit circle”, Sib. Zh. Ind. Mat., 3:1 (2000), 16–32 | MR | Zbl