Consistency of high-order Godunov schemes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B31-B45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper focuses on a rigorous treatment of consistency of high order numerical fluxes in dealing with nonlinear hyperbolic conservation laws. It demonstrates how a clear understanding of consistency leads to stability and convergence . The classical paper [18] by S. K. Godunov had a revolutionary effect on the field of numerical simulations of compressible fluid flows. Its novelty was the suggestion to use local analytic solutions in the construction of numerical fluxes. The seminal paper of van Leer [32] has inaugurated the period of universal interest in high-resolution extensions of Godunov's scheme. The fundamental step consists of modifying the (locally) self-similar solution to the Riemann Problem (at discontinuities) by allowing piecewise polynomial (rather than piecewise constant) initial data. The GRP (Generalized Riemann Problem) analysis [2] provided analytical solutions (for piecewise linear data) that could be readily implemented in a high-resolution robust code. The first significant observation made here is that under very mild conditions the associated fluxes are Lipschitz continuous with respect to the spatial coordinates.It entails the result that a weak solution is indeed a solution to the corresponding balance law (obtained by a formal application of the Gauss-Green formula), thus closing the gap between the mathematical notion of a “weak solution” and the formalism of “balance law” (integral formulation) favored by fluid dynamicists. Since high-resolution schemes require the computation of several quantities per mesh cell (e.g., slopes), the notion of “flux consistency” must be extended to this framework. Mathematically, it is the adaption of the Lax-Wendroff methodology in the setting of discontinuous solutions. A combination of the appropriate consistency hypothesis and stability of the scheme leads to a convergence theorem, generalizing the classical convergence theorem of Lax and Wendroff [20].
Keywords: balance laws, hyperbolic conservation laws, finite volume approximations, flux regularity, consistency, high order resolution
Mots-clés : convergence.
@article{SEMR_2024_21_2_a71,
     author = {M. Ben-Artzi},
     title = {Consistency of high-order {Godunov} schemes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {B31--B45},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a71/}
}
TY  - JOUR
AU  - M. Ben-Artzi
TI  - Consistency of high-order Godunov schemes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - B31
EP  - B45
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a71/
LA  - en
ID  - SEMR_2024_21_2_a71
ER  - 
%0 Journal Article
%A M. Ben-Artzi
%T Consistency of high-order Godunov schemes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P B31-B45
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a71/
%G en
%F SEMR_2024_21_2_a71
M. Ben-Artzi. Consistency of high-order Godunov schemes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B31-B45. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a71/

[1] M. Ben-Artzi, “GRP - A direct Godunov extension”, J. Comput. Phys., 519 (2024), 113388 | DOI | MR | Zbl

[2] M. Ben-Artzi, J. Falcovitz, “A second-order Godunov-type scheme for compressible fluid dynamics”, J. Comput. Phys., 55 (1984), 1–32 | DOI | MR | Zbl

[3] M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge University Press, Cambridge, 2003 | MR

[4] M. Ben-Artzi, J. Li, G. Warnecke, “A direct Eulerian GRP scheme for compressible fluid flows”, J. Comput. Phys., 218:1 (2006), 19–43 | DOI | MR | Zbl

[5] M. Ben-Artzi, J. Li, “Hyperbolic conservation laws: Riemann invariants and the generalized Riemann problem”, Numer. Math., 106:3 (2007), 369–425 | DOI | MR | Zbl

[6] M. Ben-Artzi, J. Li, “Consistency of finite volume approximations to nonlinear hyperbolic balance laws”, Math. Comput., 90:327 (2021), 141–169 | DOI | MR | Zbl

[7] M. Ben-Artzi, J. Li, “Regularity of fluxes in nonlinear hyperbolic balance laws”, Commun. Appl. Math. Comput., 5:3 (2023), 1289–1298 | DOI | MR | Zbl

[8] C. Berthon, “Stability of the MUSCL schemes for the Euler equations”, Comm. Math. Sci., 3:2 (2005), 133–157 | DOI | MR | Zbl

[9] F. Bouchut, Ch. Bourdarias, B. Perthame, “A MUSCL method satisfying all the numerical entropy inequalities”, Math. Comput., 65:216 (1996), 1439–1461 | DOI | MR | Zbl

[10] G.Q. Chen, G.E. Comi, M. Torres, “Cauchy fluxes and Gauss-Green formulas for divergence measure fields over general open sets”, Arch. Rat. Mech.Anal., 233:1 (2019), 87–166 | DOI | MR | Zbl

[11] C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften, Fourth Edition, Springer, Heidelberg, 2016 | DOI | MR

[12] L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998 | MR | Zbl

[13] R. Eymard, T. Gallouët, R. Herbin, “Finite Volume Methods”, Handbook of Numerical Analysis, v. VII, eds. P.G. Ciarlet, J.L. Lions, North-Holland/ Elsevier, Amsterdam, 2000, 713–1020 | MR | Zbl

[14] H. Federer, Geometric Measure Theory, Springer-Verlag, Heidelberg, 1969 | MR | Zbl

[15] E. Godlewski, P.A. Raviart, Hyperbolic Systems of Conservation Laws, Ellipses, Paris, 1991 | MR | Zbl

[16] S. K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics”, Mat. Sb., Nov. Ser., 47(89):3 (1959), 271–306 | MR | Zbl

[17] M.E. Gurtin, L.C. Martins, “Cauchy's theorem in classical physics”, Arch. Rat. Mech. Anal., 60 (1976), 305–324 | DOI | MR | Zbl

[18] P. Lax, B. Wendroff, “Systems of conservation laws”, Comm. Pure Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl

[19] X. Lei, J. Li, “Transversal effects of high order numerical schemes for compressible fluid flows”, AMM, Appl. Math. Mech., Engl. Ed., 40:3 (2019), 343–354 | DOI | MR | Zbl

[20] J. Li, Z. Du, “A two-stage fourth order time-accurate discretization for Lax-Wendroff type flow solvers, I. Hyperbolic conservation laws”, SIAM J. Sci. Comput., 38:5 (2016), A3046–A3069 | DOI | MR | Zbl

[21] J. Li, Y. Wang, “Thermodynamical effects and high resolution methods for compressible fluid flows”, J. Comput. Phys., 343 (2017), 340–354 | DOI | MR | Zbl

[22] J. Qian, J. Li, S. Wang, “The generalized Riemann problems for compressible fluid flows: Towards high order”, J. Comput. Phys., 259 (2014), 358–389 | DOI | MR | Zbl

[23] R.D. Richtmyer, K.W. Morton, Difference Methods for Initial Value Problems, Interscience Publishers, a division of John Wiley and Sons, New York-London-Sidney, 1967 | MR | Zbl

[24] W. Sheng, Q. Zhang, Y. Zheng, “A direct Eulerian GRP scheme for a blood flow model in arteries”, SIAM J. Sci. Comput., 43:3 (2021), A1975–A1996 | DOI | MR | Zbl

[25] M. Šilhavý, “The existence of the flux vector and the divergence theorem for general Cauchy fluxes”, Arch. Rat. Mech.Anal., 90 (1985), 195–212 | DOI | MR | Zbl

[26] M. Spivak, M., A Comprehensive Introduction to Differential Geometry, v. I, Publish or Perish, 1979 | MR

[27] E. Toro, “The ADER path to high-order Godunov methods”, Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy, eds. Demidenko G., Romenski E., Toro E., Dumbser M., Springer, Cham, 2020 | DOI | MR

[28] E. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 3rd ed., Springer, Berlin, 2009 | DOI | MR | Zbl

[29] B. van Leer, “Towards the ultimate conservative difference scheme.IV: A second order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI | MR | Zbl

[30] B. van Leer, “On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe”, SIAM J. Sci. Stat. Comput., 5 (1984), 1–20 | DOI | MR | Zbl

[31] B. van Leer, “Upwind and high-resolution methods for compressible flow: From donor cell to residual-distribution schemes”, Commun. Comp. Phys., 1:2 (2006), 192–206 | Zbl

[32] K. Wu, H. Tang, “A direct Eulerian GRP scheme for spherically symmetric general relativistic hydrodynamics”, SIAM J. Sci. Comput., 38:3 (2016), B458–B489 | DOI | MR | Zbl