Mots-clés : convergence.
@article{SEMR_2024_21_2_a71,
author = {M. Ben-Artzi},
title = {Consistency of high-order {Godunov} schemes},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {B31--B45},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a71/}
}
M. Ben-Artzi. Consistency of high-order Godunov schemes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B31-B45. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a71/
[1] M. Ben-Artzi, “GRP - A direct Godunov extension”, J. Comput. Phys., 519 (2024), 113388 | DOI | MR | Zbl
[2] M. Ben-Artzi, J. Falcovitz, “A second-order Godunov-type scheme for compressible fluid dynamics”, J. Comput. Phys., 55 (1984), 1–32 | DOI | MR | Zbl
[3] M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge University Press, Cambridge, 2003 | MR
[4] M. Ben-Artzi, J. Li, G. Warnecke, “A direct Eulerian GRP scheme for compressible fluid flows”, J. Comput. Phys., 218:1 (2006), 19–43 | DOI | MR | Zbl
[5] M. Ben-Artzi, J. Li, “Hyperbolic conservation laws: Riemann invariants and the generalized Riemann problem”, Numer. Math., 106:3 (2007), 369–425 | DOI | MR | Zbl
[6] M. Ben-Artzi, J. Li, “Consistency of finite volume approximations to nonlinear hyperbolic balance laws”, Math. Comput., 90:327 (2021), 141–169 | DOI | MR | Zbl
[7] M. Ben-Artzi, J. Li, “Regularity of fluxes in nonlinear hyperbolic balance laws”, Commun. Appl. Math. Comput., 5:3 (2023), 1289–1298 | DOI | MR | Zbl
[8] C. Berthon, “Stability of the MUSCL schemes for the Euler equations”, Comm. Math. Sci., 3:2 (2005), 133–157 | DOI | MR | Zbl
[9] F. Bouchut, Ch. Bourdarias, B. Perthame, “A MUSCL method satisfying all the numerical entropy inequalities”, Math. Comput., 65:216 (1996), 1439–1461 | DOI | MR | Zbl
[10] G.Q. Chen, G.E. Comi, M. Torres, “Cauchy fluxes and Gauss-Green formulas for divergence measure fields over general open sets”, Arch. Rat. Mech.Anal., 233:1 (2019), 87–166 | DOI | MR | Zbl
[11] C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften, Fourth Edition, Springer, Heidelberg, 2016 | DOI | MR
[12] L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998 | MR | Zbl
[13] R. Eymard, T. Gallouët, R. Herbin, “Finite Volume Methods”, Handbook of Numerical Analysis, v. VII, eds. P.G. Ciarlet, J.L. Lions, North-Holland/ Elsevier, Amsterdam, 2000, 713–1020 | MR | Zbl
[14] H. Federer, Geometric Measure Theory, Springer-Verlag, Heidelberg, 1969 | MR | Zbl
[15] E. Godlewski, P.A. Raviart, Hyperbolic Systems of Conservation Laws, Ellipses, Paris, 1991 | MR | Zbl
[16] S. K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics”, Mat. Sb., Nov. Ser., 47(89):3 (1959), 271–306 | MR | Zbl
[17] M.E. Gurtin, L.C. Martins, “Cauchy's theorem in classical physics”, Arch. Rat. Mech. Anal., 60 (1976), 305–324 | DOI | MR | Zbl
[18] P. Lax, B. Wendroff, “Systems of conservation laws”, Comm. Pure Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl
[19] X. Lei, J. Li, “Transversal effects of high order numerical schemes for compressible fluid flows”, AMM, Appl. Math. Mech., Engl. Ed., 40:3 (2019), 343–354 | DOI | MR | Zbl
[20] J. Li, Z. Du, “A two-stage fourth order time-accurate discretization for Lax-Wendroff type flow solvers, I. Hyperbolic conservation laws”, SIAM J. Sci. Comput., 38:5 (2016), A3046–A3069 | DOI | MR | Zbl
[21] J. Li, Y. Wang, “Thermodynamical effects and high resolution methods for compressible fluid flows”, J. Comput. Phys., 343 (2017), 340–354 | DOI | MR | Zbl
[22] J. Qian, J. Li, S. Wang, “The generalized Riemann problems for compressible fluid flows: Towards high order”, J. Comput. Phys., 259 (2014), 358–389 | DOI | MR | Zbl
[23] R.D. Richtmyer, K.W. Morton, Difference Methods for Initial Value Problems, Interscience Publishers, a division of John Wiley and Sons, New York-London-Sidney, 1967 | MR | Zbl
[24] W. Sheng, Q. Zhang, Y. Zheng, “A direct Eulerian GRP scheme for a blood flow model in arteries”, SIAM J. Sci. Comput., 43:3 (2021), A1975–A1996 | DOI | MR | Zbl
[25] M. Šilhavý, “The existence of the flux vector and the divergence theorem for general Cauchy fluxes”, Arch. Rat. Mech.Anal., 90 (1985), 195–212 | DOI | MR | Zbl
[26] M. Spivak, M., A Comprehensive Introduction to Differential Geometry, v. I, Publish or Perish, 1979 | MR
[27] E. Toro, “The ADER path to high-order Godunov methods”, Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy, eds. Demidenko G., Romenski E., Toro E., Dumbser M., Springer, Cham, 2020 | DOI | MR
[28] E. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 3rd ed., Springer, Berlin, 2009 | DOI | MR | Zbl
[29] B. van Leer, “Towards the ultimate conservative difference scheme.IV: A second order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI | MR | Zbl
[30] B. van Leer, “On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe”, SIAM J. Sci. Stat. Comput., 5 (1984), 1–20 | DOI | MR | Zbl
[31] B. van Leer, “Upwind and high-resolution methods for compressible flow: From donor cell to residual-distribution schemes”, Commun. Comp. Phys., 1:2 (2006), 192–206 | Zbl
[32] K. Wu, H. Tang, “A direct Eulerian GRP scheme for spherically symmetric general relativistic hydrodynamics”, SIAM J. Sci. Comput., 38:3 (2016), B458–B489 | DOI | MR | Zbl