@article{SEMR_2024_21_2_a70,
author = {M. Kh. Abouziarov and A. V. Kochetkov},
title = {On increasing the accuracy of the godunov scheme for gas-dynamic and elastoplastic flows},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {B12--B30},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a70/}
}
TY - JOUR AU - M. Kh. Abouziarov AU - A. V. Kochetkov TI - On increasing the accuracy of the godunov scheme for gas-dynamic and elastoplastic flows JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - B12 EP - B30 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a70/ LA - en ID - SEMR_2024_21_2_a70 ER -
%0 Journal Article %A M. Kh. Abouziarov %A A. V. Kochetkov %T On increasing the accuracy of the godunov scheme for gas-dynamic and elastoplastic flows %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P B12-B30 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a70/ %G en %F SEMR_2024_21_2_a70
M. Kh. Abouziarov; A. V. Kochetkov. On increasing the accuracy of the godunov scheme for gas-dynamic and elastoplastic flows. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. B12-B30. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a70/
[1] S.K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics”, Mat. Sb., N. Ser., 47 (1959), 271–306 | MR | Zbl
[2] S.K. Godunov, A.V. Zabrodin, M.YA. Ivanov, et al., Numerical solution of multidimensional problems of gas dynamics, Nauka, M., 1976 | MR
[3] V.P. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics”, J. Comput. Phys., 230:7 (2011), 2384–2390 | DOI | MR | Zbl
[4] B. van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI | Zbl
[5] V.I. Kopchënov, A.N. Kraiko, “A monotone second order difference scheme for hyperbolic systems with two independent variables”, Zh. Vychisl. Mat. Mat. Fiz., 23:4 (1983), 848–859 | MR | Zbl
[6] P. Colella, P. Woodward, “The piecewise parabolic method (PPM) for gas-dynamical simulations”, J. Comp. Phys., 54 (1984), 174–201 | DOI | MR | Zbl
[7] G. Miller, P. Colella, “A high-order Eulerian Godunov method for elastic-plastic flow in solids”, J. Comput. Phys., 167:1 (2001), 131–176 | DOI | Zbl
[8] A.N. Kraiko, N.I. Tillyaeva, S.A. Shcherbakov, “Comparison of the integral characteristics and shape of the profiled contours of Laval nozzles with “smooth” and “sudden” constriction”, Izv. AN SSSR. MZhG, 1986:4 (1986), 129–137
[9] N.Ya. Moiseev, “About one way to increase the accuracy of solutions in difference schemes constructed on the basis of the method of K. Godunov”, Vopr. At. Nauki Tekh., Ser. Methods and Programs Num. Problem Solving Mat. Physics, 1 (1988), 38–45
[10] M.Kh. Abuzyarov, V.G. Bazhenov, A.V. Kochetkov, “About a new effective approach to improving the accuracy of the Godunov scheme”, Applied Problems of Strength and Plasticity, 1 (1987), 43–49
[11] M.Kh. Abuzyarov, V.G. Bazhenov, A.V. Kochetkov, “On the monotonization of the Godunov scheme of the second order of accuracy by introducing scheme viscosity”, Applied Problems of Strength and Plasticity, 1 (1987), 85–90
[12] M. Abouziarov, H. Aiso, “An application of retroactive characteristic method to conservative scheme for structure problems (elastic-plastic flows)”, Hyperbolic problems. Theory, numerics and applications, Proceedings of the 10th international conference (Osaka, Japan, September 13-17, 2004), v. I, eds. Asakura F. et al., Yokohama Publishers, Yokohama, 2006, 223–230 | MR | Zbl
[13] V.N. Kukudzhanov, “Decomposition method for elastoplastic equations”, Mech. Solids, 39:1 (2004), 73–80
[14] M.H. Abuziarov, E.G. Glazova, A.V. Kochetkov, S.V. Krylov, “On New Method and 3D codes for shock wave simulation in fluids and solids in Euler variables based on a modified Godunov scheme”, WSEAS Transactions Fluid Mechanics, 18 (2023), 173–192 | DOI
[15] K.M. Abuzyarov, “The method of rupture decay in the three-dimensional dynamics of elastoplastic media”, Problems Strength Ductility, 82:3 (2020), 377–389 | DOI
[16] M.L. Wilkins, “Calculation of elastic-plastic flow”, Methods in Computational physics, v. 3, ed. B. Alder, Academic Press, New York, 1964, 211–263
[17] K.M. Abuzyarov, M.Kh. Abuziarov, A.V. Kochetkov, S.V. Krylov, A.A. Lisitsyn, I.A. Modin, “Application of the Godunov scheme to solve three-dimensional problems of high-speed interactions of elastic-plastic bodies”, Mat. Model, 35:8 (2023), 97–115 | MR | Zbl
[18] M.H. Abuziarov, E.G. Glazova, A.V. Kochetkov, S.V. Krylov, “A numerical method for solving three-dimensional problems of interaction between high-speed gas jets and elastoplastic obstacles”, Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Prots., 4 (2021), 24–40
[19] P.R. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54 (1984), 115–173 | DOI | MR | Zbl
[20] M.H. Abuziarov, E.G. Glazova, A.V. Kochetkov, S.V. Krylov, A.A. Lisitsyn, I.A. Modin, “Numerical solution of three-dimensional problems of impact interaction of elastic-plastic bodies in Euler variables based on the modified Godunov scheme”, Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Prots., 3 (2023), 16–29