On some types of algebras of a Jonsson spectrum
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 866-881 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We work in the framework of study of Jonsson spectra for concerning classes of structures. In this paper, the issues of cosemantic Jonsson theories and Jonsson spectrum are discussed. There are shown some results on the opportunity of introducing some types of algebras on the Jonsson spectrum. Also, it is proved that the finite axiomatizability of the Kaiser hull of the Jonsson theory implies the finiteness of cosemantic Jonsson theories.
Keywords: Existentially closed models, amalgamation property, joint embedding property, Jonsson theory, Jonsson spectrum, cosemantic Jonsson theories, cosemantic structures, the lattice of Jonsson theories, Jonsson equivalence, finitely axiomatizable Jonsson theory.
Mots-clés : cosemanticness classes
@article{SEMR_2024_21_2_a7,
     author = {A. R. Yeshkeyev and I. O. Tungushbayeva and O. I. Ulbrikht},
     title = {On some types of algebras of a {Jonsson} spectrum},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {866--881},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a7/}
}
TY  - JOUR
AU  - A. R. Yeshkeyev
AU  - I. O. Tungushbayeva
AU  - O. I. Ulbrikht
TI  - On some types of algebras of a Jonsson spectrum
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 866
EP  - 881
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a7/
LA  - en
ID  - SEMR_2024_21_2_a7
ER  - 
%0 Journal Article
%A A. R. Yeshkeyev
%A I. O. Tungushbayeva
%A O. I. Ulbrikht
%T On some types of algebras of a Jonsson spectrum
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 866-881
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a7/
%G en
%F SEMR_2024_21_2_a7
A. R. Yeshkeyev; I. O. Tungushbayeva; O. I. Ulbrikht. On some types of algebras of a Jonsson spectrum. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 866-881. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a7/

[1] T.G. Mustafin, “Generalized Jonsson conditions and a description of generalized Jonsson theories of Boolean algebras”, Mat. Tr., 1:2 (1998), 135–197 | MR | Zbl

[2] B. Poizat, A. Yeshkeyev, “Back and forth in positive logic”, Logic in question, eds. Béziau, J.-Y. et al., Birkhäuser, Cham, 2022, 603–609 | DOI | MR | Zbl

[3] B. Poizat, A. Yeshkeyev, “Positive Jonsson theories”, Log. Univers., 12:1-2 (2018), 101–127 | DOI | MR | Zbl

[4] Ye.T. Mustafin, “Some properties of Jonsson theories”, J. Symb. Log., 67:2 (2002), 528–536 | DOI | MR | Zbl

[5] A.R. Yeshkeyev, M.T. Kassymetova, Jonsson theories and their classes of models, KarGU, Karaganda, 2016

[6] A.R. Yeshkeyev, O.I. Ulbrikht, M.T. Omarova, “The number of fragments of the perfect class of the Jonsson spectrum”, Lobachevskii J. Math., 43:12 (2022), 3658–3673 | DOI | MR | Zbl

[7] A.R. Yeshkeyev, M.T. Kassymetova, O.I. Ulbrikht, “Independence and simplicity in Jonsson theories with abstract geometry”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 433–455 | DOI | MR | Zbl

[8] A.R. Yeshkeyev, M.T. Kassymetova, N.K. Shamatayeva, “Model-theoretic properties of the $\sharp$-companion of a Jonsson set”, Eurasian Math. J., 9:2 (2018), 68–81 | DOI | MR | Zbl

[9] A.R. Yeshkeyev, “The structure of lattices of positive existential formulae of $(\Delta$-$PJ)$-theories”, Science Asia – Journal of The Science Society of Thailand, 39:1 (2013), 19–24 | DOI

[10] H. Simmons, “Existentially closed structures”, J. Symb. Log., 37:2 (1972), 293–310 | DOI | MR | Zbl

[11] J. Barwise, Handbook of mathematical logic, Nauka, M., 1982

[12] A. Pillay, “Forking in the category of existentially closed structures”, Connections between model theory and algebraic and analytic geometry, Aracne. Quad. Mat., 6, ed. Macintyre A., Rome, 2000, 23–42 https://www.researchgate.net/publication/2808441_Forking_in_the_Category_of_Existentially_Closed_Structures | MR | Zbl

[13] W.H. Hodges, Model theory, Cambridge University Press, Cambridge, 2008 | DOI | MR | Zbl

[14] A.R. Yeshkeyev, O.I. Ul'brikht, “JSp-cosemanticness and JSB-property of abelian groups”, Sib. Èlektron. Mat. Izv., 13 (2016), 861–874 | DOI | MR | Zbl

[15] A.R. Yeshkeyev, O.I. Ul'brikht, “JSp-cosemanticness of R-modules”, Sib. Èlektron. Mat. Izv., 16 (2019), 1233–1244 http://semr.math.nsc.ru/v16.html | DOI | MR | Zbl

[16] A.R. Yeshkeyev, “Model-theoretical questions of the Jonsson spectrum”, Bulletin Of The Karaganda University-Mathematics, 98:2 (2020), 165–173 | DOI

[17] A. Ignatovic, M.Z. Grulović, “A comment on the joint embedding property”, Period. Math. Hung., 33:1 (1996), 45–50 | DOI | MR | Zbl

[18] D.A. Bryars, On the syntactic characterization of some model theoretic relations, Ph.D. Thesis, London, 1973 https://repository.royalholloway.ac.uk/items/fee7ae50-2092-4271-875f-917584f46c65/1/