Mots-clés : cosemanticness classes
@article{SEMR_2024_21_2_a7,
author = {A. R. Yeshkeyev and I. O. Tungushbayeva and O. I. Ulbrikht},
title = {On some types of algebras of a {Jonsson} spectrum},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {866--881},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a7/}
}
TY - JOUR AU - A. R. Yeshkeyev AU - I. O. Tungushbayeva AU - O. I. Ulbrikht TI - On some types of algebras of a Jonsson spectrum JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 866 EP - 881 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a7/ LA - en ID - SEMR_2024_21_2_a7 ER -
A. R. Yeshkeyev; I. O. Tungushbayeva; O. I. Ulbrikht. On some types of algebras of a Jonsson spectrum. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 866-881. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a7/
[1] T.G. Mustafin, “Generalized Jonsson conditions and a description of generalized Jonsson theories of Boolean algebras”, Mat. Tr., 1:2 (1998), 135–197 | MR | Zbl
[2] B. Poizat, A. Yeshkeyev, “Back and forth in positive logic”, Logic in question, eds. Béziau, J.-Y. et al., Birkhäuser, Cham, 2022, 603–609 | DOI | MR | Zbl
[3] B. Poizat, A. Yeshkeyev, “Positive Jonsson theories”, Log. Univers., 12:1-2 (2018), 101–127 | DOI | MR | Zbl
[4] Ye.T. Mustafin, “Some properties of Jonsson theories”, J. Symb. Log., 67:2 (2002), 528–536 | DOI | MR | Zbl
[5] A.R. Yeshkeyev, M.T. Kassymetova, Jonsson theories and their classes of models, KarGU, Karaganda, 2016
[6] A.R. Yeshkeyev, O.I. Ulbrikht, M.T. Omarova, “The number of fragments of the perfect class of the Jonsson spectrum”, Lobachevskii J. Math., 43:12 (2022), 3658–3673 | DOI | MR | Zbl
[7] A.R. Yeshkeyev, M.T. Kassymetova, O.I. Ulbrikht, “Independence and simplicity in Jonsson theories with abstract geometry”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 433–455 | DOI | MR | Zbl
[8] A.R. Yeshkeyev, M.T. Kassymetova, N.K. Shamatayeva, “Model-theoretic properties of the $\sharp$-companion of a Jonsson set”, Eurasian Math. J., 9:2 (2018), 68–81 | DOI | MR | Zbl
[9] A.R. Yeshkeyev, “The structure of lattices of positive existential formulae of $(\Delta$-$PJ)$-theories”, Science Asia – Journal of The Science Society of Thailand, 39:1 (2013), 19–24 | DOI
[10] H. Simmons, “Existentially closed structures”, J. Symb. Log., 37:2 (1972), 293–310 | DOI | MR | Zbl
[11] J. Barwise, Handbook of mathematical logic, Nauka, M., 1982
[12] A. Pillay, “Forking in the category of existentially closed structures”, Connections between model theory and algebraic and analytic geometry, Aracne. Quad. Mat., 6, ed. Macintyre A., Rome, 2000, 23–42 https://www.researchgate.net/publication/2808441_Forking_in_the_Category_of_Existentially_Closed_Structures | MR | Zbl
[13] W.H. Hodges, Model theory, Cambridge University Press, Cambridge, 2008 | DOI | MR | Zbl
[14] A.R. Yeshkeyev, O.I. Ul'brikht, “JSp-cosemanticness and JSB-property of abelian groups”, Sib. Èlektron. Mat. Izv., 13 (2016), 861–874 | DOI | MR | Zbl
[15] A.R. Yeshkeyev, O.I. Ul'brikht, “JSp-cosemanticness of R-modules”, Sib. Èlektron. Mat. Izv., 16 (2019), 1233–1244 http://semr.math.nsc.ru/v16.html | DOI | MR | Zbl
[16] A.R. Yeshkeyev, “Model-theoretical questions of the Jonsson spectrum”, Bulletin Of The Karaganda University-Mathematics, 98:2 (2020), 165–173 | DOI
[17] A. Ignatovic, M.Z. Grulović, “A comment on the joint embedding property”, Period. Math. Hung., 33:1 (1996), 45–50 | DOI | MR | Zbl
[18] D.A. Bryars, On the syntactic characterization of some model theoretic relations, Ph.D. Thesis, London, 1973 https://repository.royalholloway.ac.uk/items/fee7ae50-2092-4271-875f-917584f46c65/1/