Optimization analysis of the cloaking problems for a 2D model of magnetostatics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. A99-A117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problems for a two-dimensional model of magnetostatics arising in the development of design technologies of devices for material body cloaking are considered. It is assumed that the cloaking devices to be designed consist of a finite number of concentric annular layers filled with homogeneous anisotropic or isotropic media. The optimization technology is developed by which the mentioned inverse problems are reduced to finite-dimensional extremum problems. The role of controls in them is played by the magnetic permeabilities of the individual layers that compose the designed device. For their numerical solution, the algorithm based on the particle swarm optimization method is used. Important properties of optimal solutions are established, one of which is the bang-bang property in the case when all separate layers are isotropic. It is shown on the basis of computational experiments that cloaking devices designed using the developed optimization technology have simplicity of technical implementation and the highest efficiency in the class of devices under consideration.
Keywords: inverse problems, magnetostatics model, optimization method, cloaking shells, bang-bang principle, particle swarm optimization method, magnetic permeabilities.
@article{SEMR_2024_21_2_a68,
     author = {G. V. Alekseev and Yu. E. Spivak},
     title = {Optimization analysis of the cloaking problems for a {2D} model of magnetostatics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {A99--A117},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a68/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - Yu. E. Spivak
TI  - Optimization analysis of the cloaking problems for a 2D model of magnetostatics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - A99
EP  - A117
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a68/
LA  - ru
ID  - SEMR_2024_21_2_a68
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A Yu. E. Spivak
%T Optimization analysis of the cloaking problems for a 2D model of magnetostatics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P A99-A117
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a68/
%G ru
%F SEMR_2024_21_2_a68
G. V. Alekseev; Yu. E. Spivak. Optimization analysis of the cloaking problems for a 2D model of magnetostatics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. A99-A117. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a68/

[1] A. Alu, N. Engheta, “Achiving transparency with plasmonic and metamaterial coatings”, Phys. Rev. E, 72:1 (2005), 016623 | DOI

[2] J.B. Pendry, D. Shurig, D.R. Smith, “Controlling electromagnetic field”, Science, 312:5781 (2006), 1780–1782 | DOI | MR | Zbl

[3] U. Leonhardt, “Optical conformal mapping”, Science, 312:5781 (2006), 1777–1780 | DOI | MR | Zbl

[4] H. Chen, C. Chan, P. Sheng, “Transformation optics and metamaterials”, Nature Materials, 9 (2010), 387–396 | DOI

[5] S.A. Cummer, D. Shurig, “One path to acoustic cloaking”, New J. Phys., 9:3 (2007), 45 | DOI

[6] A. Sanchez, C. Navau, J. Prat-Camps, D.-X. Chen, “Antimagnets: controlling magnetic fields with superconductormetamaterial hybrids”, New J. Phys., 13:9 (2011), 093034 | DOI

[7] S. Guenneau, C. Amra, D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux”, Optic Express, 20:7 (2012), 8207–8218 | DOI

[8] F. Yang, Z.L. Mei, T.Z. Jin, T.J. Cui, “DC electric invisibility cloak”, Phys. Rev. Lett., 109 (2012), 053902 | DOI

[9] F. Gömöry, M. Ŝolovyov, J. Souc, C. Navau, J. Prat-Camps, A. Sanchez, “Experimental realization of a magnetic cloak”, Science, 335:6075 (2012), 1466–1468 | DOI

[10] T. Han, C.-W. Qiu, “Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields”, J. Optics, 18:4 (2016), 044003 | DOI

[11] L. Kroon, K. Järrendahl, “Neutral shielding and cloaking of magnetic fields using isotropic media”, J. Phys.: Condensed Matter, 29:3 (2017), 035801 | DOI

[12] V.G. Romanov, “The inverse diffraction problem for acoustic equations”, Dokl. Math., 81:2 (2010), 238–240 | DOI | MR | Zbl

[13] V.G. Romanov, Ju.A. Chirkunov, “Nonscattering acoustic objects in an anisotropic medium of special kind”, Dokl. Math., 87:1 (2013), 73–75 | DOI | MR | Zbl

[14] Ju.A. Chirkunov, “Nonscattering acoustic objects in a medium with a spherical stratification”, Acta Mech., 228:7 (2017), 2533–2539 | DOI | MR | Zbl

[15] B.I. Popa, S.A. Cummer, “Cloaking with optimized homogeneous anisotropic layers”, Phys. Rev. A, 79 (2009), 023806 | DOI

[16] S. Xi, H. Chen, B. Zhang, B.-I. Wu, J.Au Kong, “Route to low-scattering cylindrical cloaks with finite permittivity and permeability”, Phys. Rev. B, 79 (2009), 155122 | DOI

[17] A.N. Tikhonov, V.Y.Arsenyev, Solutions of ill-posed problems, John Wiley Sons, New York etc., 1977 | MR | Zbl

[18] G.V. Alekseev, A.V. Lobanov, Yu.E. Spivak, “Optimization method in problems of acoustic cloaking of material bodies”, Comput. Math. Math. Phys., 57:9 (2017), 1459–1474 | DOI | MR | Zbl

[19] G.V. Alekseev, Yu.E. Spivak, “Theoretical analysis of the magnetic cloaking problem based on an optimization method”, Differ. Equ., 54:9 (2018), 1125–1136 | DOI | MR | Zbl

[20] Yu.E. Spivak, “Optimization method in 2D magnetic cloaking problems”, Sib. Èlectron. Mat. Izv., 16 (2019), 812–825 | DOI | MR | Zbl

[21] A.V. Lobanov, Yu.E. Spivak, “Optimization method in two-dimensional electrical cloaking problems”, Dal'nevost. Mat. Zh., 19:1 (2019), 31–42 | MR | Zbl

[22] I. Peralta, V.D. Fachinotti, “Optimization-based design of heat flux manipulation devices with emphasis on fabricability”, Sci. Rep., 7 (2017), 6261 | DOI

[23] V.D. Fachinotti, A.A. Ciarbonetti, I. Peralta, I. Rintoul, “Optimization-based design of easy-to-make devices for heat flux manipulation”, Int. J. Thermal Sci., 128 (2018), 38–48 | DOI

[24] G. Fujii, Y. Akimoto, M. Takahashi, “Exploring optimal topology of thermal cloaks by CMA-ES”, Appl. Phys. Lett., 112:6 (2018), 061108 | DOI

[25] Q. Ji, G. Fang, J. Liang, “Achieving thermal magnification by using effective thermal conductivity”, Theor. Appl. Mech. Lett., 8:8 (2018), 164–170 | DOI

[26] L. Lan, F. Sun, Y. Liu, C.K. Ong, Y. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization”, Appl. Phys. Lett., 103:12 (2013), 121113 | DOI

[27] F. Cakoni, V.A. Kovtunenko, “Topological optimality condition for the identification of the center of an inhomogeneity”, Inverse Probl., 34:3 (2018), 035009 | DOI | MR | Zbl

[28] G. Fujii, Y. Akimoto, M. Takahashi, “Direct-current electric invisibility through topology optimization”, J. Appl. Phys., 123:23 (2018), 233102 | DOI

[29] I. Peralta, V.D. Fachinotti, J.C. Álvarez Hostos, “A brief review on thermal metamaterials for cloaking and heat flux manipulation”, Adv. Engin. Materials, 22:2 (2020), 1901034 | DOI | MR

[30] J.C. Álvarez Hostos, V.D. Fachinotti, I. Peralta, “Computational design of thermo-mechanical metadevices using topology optimization”, Appl. Math. Modelling, 90 (2021), 758–776 | DOI | MR | Zbl

[31] G. Fujii, Y. Akimoto, “Electromagnetic-acoustic biphysical cloak designed through topology optimization”, Optics Express, 30:4 (2022), 6090–6106 | DOI

[32] G.V. Alekseev, D.A. Tereshko, “Particle swarm optimization-based algorithms for solving inverse problems of designing thermal cloaking and shielding devices”, Int. J. Heat Mass Transfer, 135 (2019), 1269–1277 | DOI

[33] Zh. Fang, J. Li, X. Wang, “Optimal control for electromagnetic cloaking metamaterial parameters design”, Comput. Math. Appl., 79:4 (2020), 1165–1176 | DOI | MR | Zbl

[34] G. Alekseev, Yu. Spivak, “Numerical analysis of two-dimensional magnetic cloaking problems based on an optimization method”, Differ. Equ., 56:9 (2020), 1219–1229 | DOI | MR | Zbl

[35] G.V. Alekseev, A.V. Lobanov, “Optimization analysis of electrostatic cloaking problems”, J. Appl. Industr. Math., 14:4 (2020), 599–609 | DOI | MR

[36] G.V. Alekseev, D.A. Tereshko, Yu.V. Shestopalov, “Optimization approach for axisymmetric electric field cloaking and shielding”, Inverse Probl. Sci. Eng., 29:1 (2021), 40–55 | DOI | MR | Zbl

[37] G.V. Alekseev, Yu.E. Spivak, “Optimization-based numerical analysis of three-dimensional magnetic cloaking problems”, Comput. Math. Math. Phys., 61:2 (2021), 212–225 | DOI | MR | Zbl

[38] G.V. Alekseev, A.V. Lobanov, “Optimization method for solving cloaking and shielding problems for a 3D model of electrostatics”, Mathematics, 11:6 (2023), 1395 | DOI

[39] J. Kennedy, R. Eberhart, “Particle swarm optimization”, Proceedings of ICNN'95 – International Conference on Neural Networks (Perth, Australia), v. 4, 1995, 1942–1948 | DOI

[40] R. Poli, J. Kennedy, T. Blackwell, “Particle swarm optimization: an overview”, Swarm Intelligence, 1 (2007), 33–57 | DOI

[41] G.V. Alekseev, Invisibility problem in acoustics, optics and heat transfer, Dalnauka, Vladivostok, 2016

[42] Q. Bai, “Analysis of particle swarm optimization algorithm”, Comput. Infor. Sci., 3:1 (2010), 180–184 | DOI

[43] Z. Bai, W. Li, L. Wang, “Emittance optimization using particle swarm algorithm”, Proc. IPAC 2011, v. 1, 2011, 2271–2273 https://www-linac.kek.jp/mirror/IPAC2011/papers/wepc109.pdf

[44] T.C. Choy, Effective medium theory: Principles and applications, Oxford University Press, Oxford, 2015 | DOI

[45] D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material”, Phys. Rev. B, 12:8 (1975), 3368–3373 | DOI

[46] I. Itoh, K. Fujisawa, H. Otsuka, “NbTi/Nb/Cu multilayer composite materials for superconducting magnetic shielding”, Nippon Steel Technical Report, 85 (2002), 118–124