On the numerical reconstruction of the three-dimensional density of the medium in the acoustic system of equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. A82-A98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article it is considered a gradient method for solving a 3D coefficient inverse problem of determining the density of a medium for a hyperbolic acoustic system using a finite number of measurements. The inverse problem is reduced to minimizing the cost functional by the gradient method. A numerical algorithm for solving the coefficient inverse problem is implemented and the gradient of the residual functional is obtained by solving the corresponding conjugate problem. Within the framework of a model experiment simulating ultrasound tomography of human tissues, the results of restoring the three-dimensional density coefficient of the medium are presented.
Keywords: 3D ultrasound tomography, gradient method, optimization, hyperbolic acoustics system, Godunov method.
Mots-clés : 3D coefficient inverse problem
@article{SEMR_2024_21_2_a67,
     author = {D. V. Klyuchinskiy and N. S. Novikov and M. A. Shishlenin},
     title = {On the numerical reconstruction of the three-dimensional density of the medium in the acoustic system of equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {A82--A98},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a67/}
}
TY  - JOUR
AU  - D. V. Klyuchinskiy
AU  - N. S. Novikov
AU  - M. A. Shishlenin
TI  - On the numerical reconstruction of the three-dimensional density of the medium in the acoustic system of equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - A82
EP  - A98
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a67/
LA  - en
ID  - SEMR_2024_21_2_a67
ER  - 
%0 Journal Article
%A D. V. Klyuchinskiy
%A N. S. Novikov
%A M. A. Shishlenin
%T On the numerical reconstruction of the three-dimensional density of the medium in the acoustic system of equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P A82-A98
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a67/
%G en
%F SEMR_2024_21_2_a67
D. V. Klyuchinskiy; N. S. Novikov; M. A. Shishlenin. On the numerical reconstruction of the three-dimensional density of the medium in the acoustic system of equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. A82-A98. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a67/

[1] V.G. Romanov, S.I. Kabanikhin, Inverse problems for Maxwell's equations, VSP, Utrecht, 1994 | MR | Zbl

[2] M. Hanke, A. Neubauer, O. Scherzer, “A convergence analysis of the Landweber iteration for nonlinear ill-posed problems”, Numer. Math., 72:1 (1995), 21–37 | DOI | MR | Zbl

[3] S. He, S.I. Kabanikhin, “An optimization approach to a three-dimensional acoustic inverse problem in the time domain”, J. Math. Phys., 36:8 (1995), 4028–4043 | DOI | MR | Zbl

[4] T. Douglas Mast, “Empirical relationships between acoustic parameters in human soft tissues”, Acoust. Res. Lett. Online, 1:2 (2000), 37–42 | DOI

[5] H. Okawai, K. Kobayashi, S. Nitta, “An approach to acoustic properties of biological tissues using acoustic micrographs of attenuation constant and sound speed”, J. Ultrasound Med., 20:8 (2001), 891–907 | DOI

[6] S.I. Kabanikhin, O. Scherzer, M.A. Shishlenin, “Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation”, J. Inverse Ill-Posed Probl., 11:1 (2003), 87–109 | DOI | MR | Zbl

[7] V.G. Romanov, D.I. Glushkova, “The problem of determining two coefficients of a hyperbolic equation”, Dokl. Math., 67:3 (2003), 386–390 | MR | Zbl

[8] D.I. Glushkova, V.G. Romanov, “A stability estimate for a solution to the problem of determination of two coefficients of a hyperbolic equation”, Sib. Math. J., 44:2 (2003), 250–259 | DOI | MR | Zbl

[9] S.I. Kabanikhin, M.A. Shishlenin, “Quasi-solution in inverse coefficient problems”, J. Inverse Ill-Posed Probl., 16:7 (2008), 705–713 | DOI | MR | Zbl

[10] A.N. Golubinskiy, S.B. Dvoryankin, “On the issue of parameterization of the results of acoustic sensing of the human body in the implementation of the contact-difference method of audio identification”, Spetstechnika i svyaz, 2 (2011), 38–43 (in Russian) https://cyberleninka.ru/article/n/k-voprosu-o-parametrizatsii-rezultatov-akusticheskogo-zondirovaniya-tela-cheloveka-pri-realizatsii-kontaktno-raznostnogo-metoda

[11] N. Duric, P. Littrup, C. Li, O. Roy, S. Schmidt, R. Janer, X. Cheng, J. Goll, O. Rama, L. Bey-Knight, W. Greenway, “Breast ultrasound tomography: Bridging the gap to clinical practice”, Proc. SPIE, 8320 (2012), 832000

[12] A.M. Blokhin, Y.L. Trakhinin, Well-posedness of linear hyperbolic problems: theory and applications, Nova Science Publishers, New York, 2006 | MR | Zbl

[13] M.G. Marmot, D.G. Altman, D.A. Cameron, J.A. Dewar, S.G. Thompson, M. Wilcox, “The benefits and harms of breast cancer screening: an independent review”, Br. J. Cancer, 108:11 (2013), 2205–2240 | DOI

[14] K. Wang, T. Matthews, F. Anis, C. Li, N. Duric, M. Anastasio, “Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 62:3 (2015), 475–493 | DOI

[15] I.M. Kulikov, N.S. Novikov, M.A. Shishlenin, “Mathematical modeling of ultrasonic wave propagation in a two-dimensional medium: direct and inverse problem”, Proceedings of the VI International scientific school-conference for young scientists «Theory and numerical methods for solving inverse and ill-posed problem», Proceedings of Conferences, Sib Èlectron. Math. Izv., 12, eds. S.I. Kabanikhin, M.A. Shishlenin, 2015, C219–C228 http://semr.math.nsc.ru/v12/c1-283.pdf | MR

[16] V.A. Burov, D.I. Zotov, O.D. Rumyantseva, “Reconstruction of the sound velocity and absorption spatial distributions in soft biological tissue phantoms from experimental ultrasound tomography data”, Acoust. Phys., 61:2 (2015), 231–248 | DOI | MR

[17] J.W. Wiskin, D.T. Borup, E. Iuanow, J. Klock, M.W. Lenox, “3D nonlinear acoustic inverse scattering: algorithm and quantitative results”, IEEE Trans Ultrason Ferroelectr Freq Control, 64:8 (2017), 1161–1174 | DOI

[18] H. Gemmeke, T. Hopp, M. Zapf, C. Kaiser, N.V. Ruiter, “3D ultrasound computer tomography: Hardware setup, reconstruction methods and first clinical results”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 873 (2017), 59–65 | DOI

[19] S. Bernard, V. Monteiller, D. Komatitsch, P. Lasaygues, 2017, “Ultrasonic computed tomography based on full-waveform inversion for bone quantitative imaging”, Phys. Med. Biol., 62:17 (2017), 7011–7035 | DOI

[20] M. Pérez-Liva, J.L. Herraiz, J.M. Udias, E. Miller, B.T. Cox, B.E. Treeby, “Time domain reconstruction of sound speed and attenuation in ultrasound computed tomography using full wave inversion”, J. Acoust. Soc. Am., 141:3 (2017), 1595–1604 | DOI

[21] K.J. Opieliński, P. Pruchnicki, P. Szymanowski, W.K. Szepieniec, H. Szweda, E. Świś, M. Jóźwik, M. Tenderenda, M. Bułkowski, “Multimodal ultrasound computer-assisted tomography: An approach to the recognition of breast lesions”, Comput. Med. Imaging Graph., 65 (2018), 102–114 | DOI

[22] B. Malik, R. Terry, J. Wiskin, M. Lenox, “Quantitative transmission ultrasound tomography: Imaging and performance characteristics”, Med. Phys., 45:7 (2018), 3063–3075 | DOI

[23] R. Guo, G. Lu, B. Qin, B. Fei, “Ultrasound imaging technologies for breast cancer detection and management: A review”, Ultrasound Med. Biol., 44:1 (2018), 37–70 | DOI

[24] J. Wiskin, B. Malik, R. Natesan, M. Lenox, “Quantitative assessment of breast density using transmission ultrasound tomography”, Med. Phys., 46:6 (2019), 2610–2620 | DOI

[25] R. Sood, A.F. Rositch, D. Shakoor, E. Ambinder, K.-L. Pool, E. Pollack, D.J. Mollura, L.A. Mullen, S.C. Harvey, “Ultrasound for breast cancer detection globally: a systematic review and meta-analysis”, J. Glob. Oncol., 5 (2019), 1–17 | DOI

[26] A. Vourtsis, “Three-dimensional automated breast ultrasound: Technical aspects and first results”, Diagn. Interv. Imaging, 100:10 (2019), 579–592 | DOI

[27] V. Filatova, A. Danilin, V. Nosikova, L. Pestov, “Supercomputer Simulations of the Medical Ultrasound Tomography Problem”, Parallel Computational Technologies, PCT 2019, Commun. Comput. Inf. Sci., 1063, eds. Sokolinsky L., Zymbler M., Springer, Cham, 2019, 297–308

[28] S.I. Kabanikhin, D.V. Klyuchinskiy, N.S. Novikov, M.A. Shishlenin, “Numerics of acoustical 2D tomography based on the conservation laws”, J. Inverse Ill-Posed Probl., 28:2 (2020), 287–297 | DOI | MR | Zbl

[29] D. Klyuchinskiy, N. Novikov, M. Shishlenin, “A modification of gradient descent method for solving coefficient inverse problem for acoustics equations”, Computation, 8:3 (2020), 73 | DOI

[30] A.S. Kozelkov, O.L. Krutyakova, V.V. Kurulin, D.Yu. Strelets, M.A. Shishlenin, “The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations”, Sib. Élektron. Mat. Izv., 18:2 (2021), 1238–1250 | DOI | MR | Zbl

[31] V. Filatova, L. Pestov, A. Poddubskaya, “Detection of velocity and attenuation inclusions in the medical ultrasound tomography”, J. Inverse Ill-Posed Probl., 29:3 (2021), 459–466 | DOI | MR | Zbl

[32] O.D. Rumyantseva, A.S. Shurup, D.I. Zotov, “Possibilities for separation of scalar and vector characteristics of acoustic scatterer in tomographic polychromatic regime”, J. Inverse Ill-Posed Probl., 29:3 (2021), 407–420 | DOI | MR | Zbl

[33] D.V. Klyuchinskiy, N.S. Novikov, M.A. Shishlenin, “CPU-time and RAM memory optimization for solving dynamic inverse problems using gradient-based approach”, J. Comput. Phys., 439 (2021), 110374 | DOI | MR | Zbl

[34] D. Klyuchinskiy, N. Novikov, M. Shishlenin, “Recovering density and speed of Sound coefficients in the 2D hyperbolic system of acoustic equations of the first order by a finite number of observations”, Mathematics, 9:2 (2021), 199 | DOI

[35] M. Shishlenin, N. Savchenko, N. Novikov, D. Klyuchinskiy, “Modeling of 2D acoustic radiation patterns as a control problem”, Mathematics, 10:7 (2022), 1116 | DOI

[36] A.S. Shurup, “Numerical comparison of iterative and functional-analytical algorithms for inverse acoustic scattering”, Eurasian J. Math. Computer Appl., 10:1 (2022), 79–99

[37] F. Li, U. Villa, N. Duric, M.A. Anastasio, “A forward model incorporating elevation-focused transducer properties for 3D full-waveform inversion in ultrasound computed tomography”, IEEE Trans Ultrason Ferroelectr Freq Control, 70:10 (2023), 1339–1354 | DOI

[38] W. Zhao, Y. Fan, H. Wang, H. Gemmeke, Koen W.A. van Dongen, T. Hopp, J. Hesser, “Simulation-to-real generalization for deep-learning-based refraction-corrected ultrasound tomography image reconstruction”, Phys Med Biol., 68:3 (2023), 035016 | DOI

[39] L. Lozenski, H. Wang, B. Wohlberg, U. Villa, Y. Lin, “Data driven methods for ultrasound computed tomography”, Medical Imaging: Physics of Medical Imaging, Proc. SPIE, 12463, 2023, 124630Q | DOI

[40] M. Shishlenin, A. Kozelkov, N. Novikov, “Nonlinear Medical Ultrasound Tomography: 3D Modeling of Sound Wave Propagation in Human Tissues”, Mathematics, 12:2 (2024), 212 | DOI | MR

[41] V.G. Romanov, “Ray statement of the acoustic tomography problem”, Dokl. Math., 106:1 (2022), 254–258 | DOI | MR | Zbl

[42] A. Prikhodko, M.A. Shishlenin, N.S. Novikov, D.V. Klyuchinskiy, “Encoder neural network in 2d acoustic tomography”, Appl. Comput. Math., 23:1 (2024), 83–98 | DOI | MR

[43] S.I. Kabanikhin, M.A. Shishlenin, “On the use of a priori information in coefficient inverse problems for hyperbolic equations”, Trudy Instituta Matematiki i Mekhaniki URO RAN, 18:1 (2012), 147–164

[44] J. Wiskin, B. Malik, C. Ruoff, N. Pirshafiey, M. Lenox, J. Klock, “Whole-Body Imaging Using Low Frequency Transmission Ultrasound”, Academic Radiology, 30:11 (2023), 2674–2685 | DOI

[45] J. Wiskin,B. Malik, D. Borup, N. Pirshafiey, J. Klock, “Full wave 3D inverse scattering transmission ultrasound tomography in the presence of high contrast”, Sci Rep., 10 (2020), 20166 | DOI

[46] N. Ozmen, R. Dapp, M. Zapf, H. Gemmeke, N.V. Ruiter, K.W.A. van Dongen, “Comparing different ultrasound imaging methods for breast cancer detection”, IEEE Trans Ultrason Ferroelectr Freq Control, 62:4 (2015), 637–646 | DOI

[47] S.K. Godunov, A.V. Zabrodin, M.Y. Ivanov, A.N. Kraiko, G.P. Prokopov, Numerical solution of multidimensional problems of gas dynamics, Nauka, M., 1976 | MR

[48] T.P. Matthews, K. Wang, C. Li, N. Duric, M.A. Anastasio, “Regularized dual averaging image reconstruction for full-wave ultrasound computed tomography”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64:5 (2017), 811–825 | DOI

[49] L. Beilina, M. Cristofol, Sh. Li, M. Yamamoto, “Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations”, Inverse Probl., 34:1 (2017), 015001 | DOI | MR | Zbl

[50] L. Beilina, M. Cristofol, Sh. Li, “Determining the conductivity for a nonautonomous hyperbolic operator in a cylindrical domain”, Math. Methods Appl. Sci., 41:5 (2018), 2012–2030 | DOI | MR

[51] M.V. Klibanov, A. Timonov, “A comparative study of two globally convergent numerical methods for acoustic tomography”, Commun. Anal. Comput., 1:1 (2023), 12–31 | DOI | MR | Zbl

[52] T.G. Muir, E.L. Carstensen, “Prediction of nonlinear acoustic effects at biomedical frequencies and intensities”, Ultrasound Med Biol., 6:4 (1980), 345–357 | DOI | MR

[53] B. Kaltenbacher, “Mathematics of nonlinear acoustics”, Evol. Equ. Control Theory, 4:4 (2015), 447–491 | DOI | MR | Zbl

[54] B.T. Poljak, “Some methods of speeding up the convergence of iteration methods”, U.S.S.R. Comput. Math. Math. Phys., 4:5 (1967), 1–17 | DOI | MR | Zbl

[55] D. Lukyanenko, V. Shinkarev, A. Yagola, “Accounting for round-off errors when using gradient minimization methods”, Algorithms, 15:9 (2022), 324 | DOI

[56] A. d'Aspremont, D. Scieur, A. Taylor, “Acceleration Methods”, Foundations and Trends in Optimization, 5:1-2 (2021), 1–245 | DOI

[57] M.A. Shishlenin, N.A. Savchenko, N.S. Novikov, D.V. Klyuchinskiy, “On the reconstruction of the absorption coefficient for the 2d acoustic system”, Sib. Élektron. Mat. Izv., 20:2 (2023), 1474–1489 | DOI | MR | Zbl

[58] S.I. Kabanikhin, M.A. Shishlenin, “Theory and numerical methods for solving inverse and ill-posed problems”, J. Inverse Ill-Posed Probl., 27:3 (2019), 453–456 | DOI | MR