@article{SEMR_2024_21_2_a66,
author = {Z. Zhang and V. Lyashev},
title = {Regularized {Cholesky} decomposition method for finite bit width computing},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {A70--A81},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a66/}
}
TY - JOUR AU - Z. Zhang AU - V. Lyashev TI - Regularized Cholesky decomposition method for finite bit width computing JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - A70 EP - A81 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a66/ LA - en ID - SEMR_2024_21_2_a66 ER -
Z. Zhang; V. Lyashev. Regularized Cholesky decomposition method for finite bit width computing. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. A70-A81. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a66/
[1] Z. Bai et al., “On the equivalence of MMSE and IRC receiver in MU-MIMO systems”, IEEE Commun. Lett., 15:12 (2011), 1288–1290 | DOI
[2] V. Savaux, Y. Louët, “LMMSE channel estimation in OFDM context: a review”, IET Signal Processing, 11:2 (2017), 123–134 | DOI
[3] A. Osinsky, R. Bychkov, M. Trefilov, V. Lyashev, A. Ivanov, “Regularization for Cholesky decomposition in massive MIMO detection”, IEEE Wireless Communications Letters, 12:9 (2023), 1603–1607 | DOI
[4] S.H. Cheng, N.J. Higham, “A modified Cholesky algorithm based on a symmetric indefinite factorization”, SIAM J. Matrix Anal. Appl., 19:4 (1998), 1097–1110 | DOI | MR | Zbl
[5] N.J. Higham, Accuracy and stability of numerical algorithms, SIAM, Philadelphia, 2002 | MR | Zbl
[6] N.J. Higham, T. Mary, “A new approach to probabilistic rounding error analysis”, SIAM J. Sci. Comput., 41:5 (2019), A2815–A2835 | DOI | MR | Zbl
[7] I. Kolesnikov, V. Lyashev, M. Kirichenko, “Fast algorithm for estimating singular values of Hermitian matrix”, 31st Telecommunications Forum (TELFOR) (Belgrade, Serbia), 2023, 1–4
[8] G.H. Golub, C.F. Van Loan, Matrix computations, The Johns Hopkins University Press, Baltimore, 2013 | MR
[9] J.H. Wilkinson, “A priori error analysis of algebraic processes”, Tr. Mezhdunarod. Kongr. Mat. (Moskva), 1966, 629–639 | MR | Zbl
[10] Fukaya T, Kannan R, Nakatsukasa Y, Yamamoto Y, Yanagisawa Y., “Performance evaluation of the shifted Cholesky QR algorithm for ill-conditioned matrices”, SC18 Supercomputing, Proceedings, Poster No 69 https://sc18.supercomputing.org/proceedings/tech_poster/poster_files/post193s2-file3.pdf
[11] W. Hoeffding, “Probability inequalities for sums of bounded random variables”, J. Amer. Stat. Assoc., 58 (1963), 13–30 | DOI | MR | Zbl
[12] Z. Bai, J. Demmel, A. McKenney, On floating point errors in Cholesky, Technical Report CS-89-87, LAPACK Working Note 14, Department of Computer Science, University of Tennessee, Knoxville, TN, USA, October 1989