Keywords: interior solution, boundary solution, regularization, stretching, displacement, rotation by an angle.
@article{SEMR_2024_21_2_a65,
author = {A. N. Rogalev},
title = {Regularization of numerical estimates of solution regions of differential equations with disturbing effects},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {A57--A69},
year = {2024},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a65/}
}
TY - JOUR AU - A. N. Rogalev TI - Regularization of numerical estimates of solution regions of differential equations with disturbing effects JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - A57 EP - A69 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a65/ LA - ru ID - SEMR_2024_21_2_a65 ER -
%0 Journal Article %A A. N. Rogalev %T Regularization of numerical estimates of solution regions of differential equations with disturbing effects %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P A57-A69 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a65/ %G ru %F SEMR_2024_21_2_a65
A. N. Rogalev. Regularization of numerical estimates of solution regions of differential equations with disturbing effects. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. A57-A69. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a65/
[1] A.A. Martynyuk, “Stability of a set of trajectories of nonlinear dynamics”, Dokl. Math., 75:3 (2007), 385–3389 | DOI | MR | Zbl
[2] L.T. Ashchepkov, “External bounds and step controllability of the linear interval system”, Autom. Remote Control, 69:4 (2008), 590–596 | DOI | MR | Zbl
[3] E.K. Kostousova, “On the boundedness of outer polyhedral estimates for reachable sets of linear systems”, Comput. Math. Math. Phys., 48:6 (2008), 918–932 | DOI | MR | Zbl
[4] A.B. Kurzhansky, Control and observation under uncertainty, Nauka, M., 1977 | Zbl
[5] V.N. Ushakov, A.A. Ershov, A.V. Ushakov, “Control systems depending on a parameter: reachable sets and integral funnels”, Mech. Solids, 57:7 (2022), 1672–1688 | DOI | MR | Zbl
[6] T.F. Filippova, “HJB-inequalities in estimating reachable sets of a control system under uncertainty”, Ural Math. J., 8:1 (2022), 34–42 | DOI | MR | Zbl
[7] F.L. Chernous'ko, Estimates of the phase state of dynamic systems. The method of ellipsoids, Nauka, M., 1988 | MR | Zbl
[8] A.N. Rogalev, A.A. Rogalev, N.A. Feodorova, “Numerical computations of the safe boundaries of complex technical systems and practical stability”, J. Phys: Conf. Ser., 1399:3 (2019), 033112 | DOI
[9] A.N. Rogalev, A.A. Rogalev, N.A. Feodorova, “Malfunction analysis and safety of mathematical models of technical systems”, J. Phys.: Conf. Ser., 1515 (2020), 022064 | DOI
[10] A.N. Rogalev, “Set of solutions of ordinary differential equations in stability problems”, Continuum mechanics, applied mathematics and scientific computing: Godunov's Legacy, eds. Demidenko G. et al., Springer, Cham, 2020, 307–312 | DOI | MR
[11] A.N. Rogalev, A.A. Rogalev, N.A. Feodorova, “Mathematical modeling of risk and safe regions of technical systems and surviving trajectories”, J. Phys.: Conf. Ser., 1889 (2021), 022108 | DOI
[12] A.N. Rogalev, “Symbolic methods for estimating the sets of solutions of ordinary differential equations with perturbations on a finite time interval”, J. Vibration Testing System Dynamics, 7:1 (2023), 31–37 | DOI
[13] V.G. Romanov, “Regularization of a solution to the Cauchy problem with data on a timelike plane”, Sib. Math. J., 59:4 (2018), 694–704 | DOI | MR | Zbl
[14] A.N. Tikhonov, V.Ya. Arsenin, Methods for solving ill-conditioned problems, Nauka, M., 1979 | Zbl
[15] V.A. Morozov, Regular methods for the solution of ill-posed problems, Nauka, M., 1987 | MR | Zbl
[16] V.K. Ivanov, I.V. Mel'nikova, A.I. Filinkov, Operator-differential equations and ill-posed problems, Nauka. Fizmatlit, M., 1995 | MR | Zbl
[17] V.M. Alekseev, “On estimating perturbations of solutions of ordinary differential equations I”, Vestn. Mosk. Univ., Ser. I, 16:2 (1961), 28–36 | MR | Zbl
[18] V.M. Alekseev, “On estimating perturbations of solutions of ordinary differential equations. II”, Vestn. Mosk. Univ., Ser. I, 16:3 (1961), 3–10 | MR | Zbl
[19] P.K. Rashevsky, Riemannian geometry and tensor analysis, Nauka, M., 1967 | MR | Zbl