Regularization of numerical estimates of solution regions of differential equations with disturbing effects
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. A57-A69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper studies algorithms for solving applied problems of estimating the areas of solutions of differential equations. Such problems arise when assessing the practical stability of movements on a finite time interval, when determining the areas of attainability of controlled systems, when assessing the areas of survivability of controlled systems, when calculating guaranteed (not probabilistic) boundaries of zones of dangerous states of technical systems, when computing bounded values of parameters of technical systems that correspond to the boundaries of dangerous zones, when calculating the maximum deviations of movements in order to control whether the system's trajectory enters a dangerous zone. In the problems listed above, for some of the parameters, only estimates of the ranges of their values are known, which leads to the emergence of sets of solutions. The difficulty in solving these problems lies in the fact that most methods for estimating solution sets of ODE systems (or calculating upper and lower boundaries of solutions) lead to a strong increase in the boundaries of these solution sets. In this case, the problem of finding a solution to the same ODE system with numerical values of the parameters can be correctly posed and a convergent method can exist for it. To overcome such growth of boundaries of solution sets, it is useful to regularize the estimates of boundaries of solution sets by moving to a linear approximation of the original system. This regularization is specified by the values of compression/extension in given directions, displacement along the time axis, and rotation by a certain angle of the selected directions of the solution set.
Mots-clés : perturbations, solution set, compression
Keywords: interior solution, boundary solution, regularization, stretching, displacement, rotation by an angle.
@article{SEMR_2024_21_2_a65,
     author = {A. N. Rogalev},
     title = {Regularization of numerical estimates of solution regions of differential equations with disturbing effects},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {A57--A69},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a65/}
}
TY  - JOUR
AU  - A. N. Rogalev
TI  - Regularization of numerical estimates of solution regions of differential equations with disturbing effects
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - A57
EP  - A69
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a65/
LA  - ru
ID  - SEMR_2024_21_2_a65
ER  - 
%0 Journal Article
%A A. N. Rogalev
%T Regularization of numerical estimates of solution regions of differential equations with disturbing effects
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P A57-A69
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a65/
%G ru
%F SEMR_2024_21_2_a65
A. N. Rogalev. Regularization of numerical estimates of solution regions of differential equations with disturbing effects. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. A57-A69. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a65/

[1] A.A. Martynyuk, “Stability of a set of trajectories of nonlinear dynamics”, Dokl. Math., 75:3 (2007), 385–3389 | DOI | MR | Zbl

[2] L.T. Ashchepkov, “External bounds and step controllability of the linear interval system”, Autom. Remote Control, 69:4 (2008), 590–596 | DOI | MR | Zbl

[3] E.K. Kostousova, “On the boundedness of outer polyhedral estimates for reachable sets of linear systems”, Comput. Math. Math. Phys., 48:6 (2008), 918–932 | DOI | MR | Zbl

[4] A.B. Kurzhansky, Control and observation under uncertainty, Nauka, M., 1977 | Zbl

[5] V.N. Ushakov, A.A. Ershov, A.V. Ushakov, “Control systems depending on a parameter: reachable sets and integral funnels”, Mech. Solids, 57:7 (2022), 1672–1688 | DOI | MR | Zbl

[6] T.F. Filippova, “HJB-inequalities in estimating reachable sets of a control system under uncertainty”, Ural Math. J., 8:1 (2022), 34–42 | DOI | MR | Zbl

[7] F.L. Chernous'ko, Estimates of the phase state of dynamic systems. The method of ellipsoids, Nauka, M., 1988 | MR | Zbl

[8] A.N. Rogalev, A.A. Rogalev, N.A. Feodorova, “Numerical computations of the safe boundaries of complex technical systems and practical stability”, J. Phys: Conf. Ser., 1399:3 (2019), 033112 | DOI

[9] A.N. Rogalev, A.A. Rogalev, N.A. Feodorova, “Malfunction analysis and safety of mathematical models of technical systems”, J. Phys.: Conf. Ser., 1515 (2020), 022064 | DOI

[10] A.N. Rogalev, “Set of solutions of ordinary differential equations in stability problems”, Continuum mechanics, applied mathematics and scientific computing: Godunov's Legacy, eds. Demidenko G. et al., Springer, Cham, 2020, 307–312 | DOI | MR

[11] A.N. Rogalev, A.A. Rogalev, N.A. Feodorova, “Mathematical modeling of risk and safe regions of technical systems and surviving trajectories”, J. Phys.: Conf. Ser., 1889 (2021), 022108 | DOI

[12] A.N. Rogalev, “Symbolic methods for estimating the sets of solutions of ordinary differential equations with perturbations on a finite time interval”, J. Vibration Testing System Dynamics, 7:1 (2023), 31–37 | DOI

[13] V.G. Romanov, “Regularization of a solution to the Cauchy problem with data on a timelike plane”, Sib. Math. J., 59:4 (2018), 694–704 | DOI | MR | Zbl

[14] A.N. Tikhonov, V.Ya. Arsenin, Methods for solving ill-conditioned problems, Nauka, M., 1979 | Zbl

[15] V.A. Morozov, Regular methods for the solution of ill-posed problems, Nauka, M., 1987 | MR | Zbl

[16] V.K. Ivanov, I.V. Mel'nikova, A.I. Filinkov, Operator-differential equations and ill-posed problems, Nauka. Fizmatlit, M., 1995 | MR | Zbl

[17] V.M. Alekseev, “On estimating perturbations of solutions of ordinary differential equations I”, Vestn. Mosk. Univ., Ser. I, 16:2 (1961), 28–36 | MR | Zbl

[18] V.M. Alekseev, “On estimating perturbations of solutions of ordinary differential equations. II”, Vestn. Mosk. Univ., Ser. I, 16:3 (1961), 3–10 | MR | Zbl

[19] P.K. Rashevsky, Riemannian geometry and tensor analysis, Nauka, M., 1967 | MR | Zbl