@article{SEMR_2024_21_2_a62,
author = {Ali Zand Vakili and Ali Farokhinia},
title = {Numerical radii inequalities for certain operator sums},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1440--1449},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a62/}
}
TY - JOUR AU - Ali Zand Vakili AU - Ali Farokhinia TI - Numerical radii inequalities for certain operator sums JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 1440 EP - 1449 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a62/ LA - en ID - SEMR_2024_21_2_a62 ER -
Ali Zand Vakili; Ali Farokhinia. Numerical radii inequalities for certain operator sums. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1440-1449. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a62/
[1] R. Bhatia, Matrix Analysis, Springer, New York, NY, 1996 | Zbl
[2] M. L. Buzano, “Generalizzazione della diseguaglianza di Cauchy–Schwarz'”, Rend. Sem. Mat. Univ. Politech. Torino, 31, 1971-72/1972-73 (1974), 405–409 | Zbl
[3] C. Conde, M. Sababheh, H. R. Moradi, Some weighted numerical radius inequalities, 2022, arXiv: 2204.07620 [math.FA]
[4] S. S. Dragomir, Kato's Type Inequalities for Bounded Linear Operators in Hilbert Spaces, Springer, Cham, 2019 | DOI | Zbl
[5] T. Furuta, Invitation to linear operators. From matrices to bounded linear operators on a Hilbert space, Taylor and Francis, London, 2001 | Zbl
[6] T. Furuta, J. Mićić Hot, J. Pečarić, and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for bounded selfadjoint operators on a Hilbert space, Element, Zagreb, 2005 | Zbl
[7] K. E. Gustafson, D. K. M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, Springer, New York, NY, 1996 | Zbl
[8] M. Hassani, M. E. Omidvar, H. R. Moradi, “New estimates on numerical radius and operator norm of Hilbert space operators”, Tokyo J. Math., 44:2 (2021), 439–449 | DOI | Zbl
[9] O. Hirzallah, F. Kittaneh, K. Shebrawi, “Numerical radius inequalities for commutators of Hilbert space operators”, Numer. Funct. Anal. Optim., 32:7 (2011), 739–749 | DOI | Zbl
[10] F. Kittaneh, “A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix”, Stud. Math., 158:1 (2003), 11–17 | DOI | Zbl
[11] F. Kittaneh, “Norm inequalities for certain operator sums”, J. Funct. Anal., 143:2 (1997), 337–348 | DOI | Zbl
[12] F. Kittaneh, “Numerical radius inequalities for Hilbert space operators”, Stud. Math., 168:1 (2005), 73–80 | DOI | Zbl
[13] F. Kittaneh, H. R. Moradi, “Cauchy-Schwarz type inequalities and applications to numerical radius inequalities”, Math. Inequal. Appl., 23:3 (2020), 1117–1125 | DOI | Zbl
[14] M. Sababheh, C. Conde, H. R. Moradi, Further numerical radius inequalities, 2022, arXiv: 2204.12045 [math.FA]
[15] M. Sababheh, H. R. Moradi, Z. Heydarbeygi, “Buzano, Kreĭn and Cauchy-Schwarz inequalities”, Oper. Matrices, 16:1 (2022), 239–250 | DOI | Zbl
[16] M. Sattari, M. S. Moslehian, T. Yamazaki, “Some generalized numerical radius inequalities for Hilbert space operators”, Linear Algebra Appl., 470 (2015), 216–227 | DOI | Zbl
[17] S. Sheybani, M. Sababheh, H. R. Moradi, “Weighted inequalities for the numerical radius”, Vietnam J. Math., 51:2 (2023), 363–377 | DOI | Zbl
[18] T. Yamazaki, “On upper and lower bounds of the numerical radius and an equality condition”, Stud. Math., 178:1 (2007), 83–89 | DOI | Zbl