Hermite Expansions of $C$-regularized cosine functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1426-1439 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is to approximate the exponentially bounded $C$-regularized cosine function by the Hermite series, recalling the notions and the results used.
Keywords: Hermite functions, Hermite Expansions, $C$-regularized semigroup, $C$-regularized cosine functions.
@article{SEMR_2024_21_2_a61,
     author = {R. A. Hassani and Y. Bajjou and A. Blali and A. El Amrani},
     title = {Hermite {Expansions} of $C$-regularized cosine functions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1426--1439},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a61/}
}
TY  - JOUR
AU  - R. A. Hassani
AU  - Y. Bajjou
AU  - A. Blali
AU  - A. El Amrani
TI  - Hermite Expansions of $C$-regularized cosine functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1426
EP  - 1439
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a61/
LA  - en
ID  - SEMR_2024_21_2_a61
ER  - 
%0 Journal Article
%A R. A. Hassani
%A Y. Bajjou
%A A. Blali
%A A. El Amrani
%T Hermite Expansions of $C$-regularized cosine functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1426-1439
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a61/
%G en
%F SEMR_2024_21_2_a61
R. A. Hassani; Y. Bajjou; A. Blali; A. El Amrani. Hermite Expansions of $C$-regularized cosine functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1426-1439. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a61/

[1] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser Verlag, Basel, 2001 | Zbl

[2] R. Askey, S. Wainger, “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Math., 87:3 (1965), 695–708 | DOI | Zbl

[3] S.S. Bonan, D. S. Clark, “Estimates of the Hermite and the Freud Polynomials”, J. Approx. Theory, 63:2 (1990), 210–224 | DOI | Zbl

[4] L. Abadias, P. Miana, “Hermite expansions of $C_{0}-$groups and cosine functions”, J. Math. Anal. Appl., 426:1 (2015), 288–311 | DOI | Zbl

[5] R. Delaubenfels, S. Guozheng, S. Wang, “Regularized semigroups, Existence Familles And the abstract Cauchy Problem”, Differ. Integral Equ., 8:6 (1995), 1477–1496 | Zbl

[6] F.L. Schwenninger, Generalisations of Semigroups of Operators in the View of Linear Relations, Institut für Analysis und Scientific Computing der Technischen Universität, Wien, 2011 https://www.researchgate.net/publication/255661927

[7] V. Keyantuo, C. Lizama, P.J. Miana, “Algebra homomorphisms defined via convoluted semigroups and cosine functions”, J. Funct. Anal., 257:11 (2009), 3454–3487 | DOI | Zbl

[8] E. Kogbetliantz, “Recherches sur la sommabilite des series d'Hermite”, Ann. Sci. Éc. Norm. Supér., 49:3 (1932), 137–221 | DOI | Zbl

[9] M. Kostic, “$(a,k)-$Regularized $C-$Resolvent Families: Regularity and Local Properties”, Abstr. Appl. Anal., 2009, 858242, 27 pp. | DOI | Zbl

[10] M. Kostic, “Approximation and convergence of degenerate $(a,k)$-regularized $C$-resolvent families”, Bull., Cl. Sci. Math. Nat., Sci. Math., 42 (2017), 69–83 | Zbl

[11] C.-C. Kuo, “Perturbations of local $C-$cosine functions”, Stud. Univ. Babeş-Bolyai, Math., 65:4 (2020), 585–597 | DOI | Zbl

[12] C.-C. Kuo, S.-Y. Shaw, “$C-$Cosine Functions and the Abstract Cauchy Problem”, J. Math. Anal. Appl., 210:2 (1997), 632–646 | DOI | Zbl

[13] N.N. Lebedev, Special functions and their applications, Translated from the Russian by R. A. Silverman, Prentice Hall, Inc. XII, Englewood Cliffs, N.J., 1965 | Zbl

[14] F. Li, J. Liang, T.J. Xiao, J. Zhang, “On perturbation of convoluted $C-$regularized operator families”, J. Funct. Spaces Appl., 2013, 579326, 8 pp. | DOI | Zbl

[15] F. Li, J.H. Liu, “Note on multiplicative perturbation of local $C-$regularized cosine functions with nondensely defined generators”, Electron. J. Qual. Theory Differ. Equ., 2010, 57, 12 pp. | DOI | Zbl

[16] M. Li, Q. Zheng, J. Zhang, “Regularized resolvent families”, Taiwanese J. Math., 11:1 (2007), 117–133 | DOI | Zbl

[17] M. Mosallanezhada, M. Janfada, “On mixed $C-$semigroups of Operators on Banach Spaces”, Filomat, 30:10 (2016), 2673–2682 | DOI | Zbl

[18] P. Preda, A. Pogan, C. Preda, “The Perron problem for $C-$semigroups”, Math. J. Okayama Univ., 46 (2004), 141–151 | Zbl

[19] J. A. Shohat, “On the development of functions in series of orthogonal polynomials”, Bull. Am. Math. Soc., 41 (1935), 49–82 | DOI | Zbl

[20] H. Skovgaard, Asymptotic forms of hermite polynomials, Department of Mathematics California institute of Technology, Pasadenea, 1959

[21] G. Szegő, Asymptotic forms of hermite polynomials, American Mathematical Society (AMS), Providence, RI, 1939 | Zbl

[22] S.W. Wang, “Properties of subgenerators of $C$-Regularized semigroups”, Proc. Am. Math. Soc., 126:2 (1998), 453–460 | DOI | Zbl

[23] J. Zhang, “Regularized cosine Functions and Polynomials of Group Generators”, Sci. Iran, 4:1–2 (1997), 12–18 | Zbl

[24] Q. Zheng, “Matrices of operators and regularized cosine functions”, J. Math. Anal. Appl., 315:1 (2006), 68–75 | DOI | Zbl

[25] Q. Zheng, Y. Zhao, “An analyticity criterion for regularized semigroups”, Proc. Am. Math., 130:8 (2002), 2271–2274 | DOI | Zbl