On extensions of minimal logic with linearity axiom
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 852-865 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dummett logic is a superintuitionistic logic obtained by adding the linearity axiom to intuitionistic logic. This is one of the first non-classical logics, whose lattice of axiomatic extensions was completely described. In this paper we investigate the logic $JC$ obtained via adding the linearity axiom to minimal logic of Johansson. So $JC$ is a natural paraconsistent analog of the Dummett logic. We describe the lattice of $JC$-extensions, prove that every element of this lattice is finitely axiomatizable, has the finite model property, and is decidable. Finally, we prove that $JC$ has exactly two pretabular extensions.
Keywords: Dummett's logic, minimal logic, linearity axiom, lattice of extensions, algebraic semantics, $j$-algebra, decidability, pretabularity.
Mots-clés : opremum
@article{SEMR_2024_21_2_a6,
     author = {D. M. Anishchenko and S. P. Odintsov},
     title = {On extensions of minimal logic with linearity axiom},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {852--865},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a6/}
}
TY  - JOUR
AU  - D. M. Anishchenko
AU  - S. P. Odintsov
TI  - On extensions of minimal logic with linearity axiom
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 852
EP  - 865
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a6/
LA  - ru
ID  - SEMR_2024_21_2_a6
ER  - 
%0 Journal Article
%A D. M. Anishchenko
%A S. P. Odintsov
%T On extensions of minimal logic with linearity axiom
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 852-865
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a6/
%G ru
%F SEMR_2024_21_2_a6
D. M. Anishchenko; S. P. Odintsov. On extensions of minimal logic with linearity axiom. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 852-865. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a6/

[1] S. Burris, H.P. Sankappanavar, A course in universal algebra, Graduate Texts in Math., 78, Springer, New York etc., 1981 https://www.math.uwaterloo.ca/s̃nburris/htdocs/ualg.html | DOI | MR | Zbl

[2] M. Dummett, “A propositional calculus with a denumerable matrix”, J. Symb. Log., 24 (1959), 97–106 | DOI | MR | Zbl

[3] J.M. Dunn, “Algebraic completeness results for R-mingle and its extensions”, J. Symb. Log., 35 (1970), 1–13 | DOI | MR | Zbl

[4] J.M. Dunn, R.K. Meyer, “Algebraic completeness results for Dummett's LC and its extensions”, Z. Math. Logik Grundlagen Math., 17:2 (1971), 225–230 | DOI | MR | Zbl

[5] J.K. Feibleman, R.M. Smullyan, R.L. Vaught, “Meeting of the association for symbolic logic”, J. Symb. Logic, 35:2 (1970), 352–363 | DOI

[6] K. Gödel, “Zum intuitionistischen Aussagenkalkül”, Kurt Gödel Collected Works, v. I, Publications 1929–1936, eds. S. Feferman et al., Oxford University Press, Oxford, 2001 | DOI | MR | Zbl | Zbl

[7] I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus”, Compos. Math., 4 (1936), 119–136 http://www.numdam.org/item/CM_1937__4__119_0/ | Zbl

[8] M. Kracht, “On extensions of intermediate logics by strong negation”, J. Philos. Log., 27:1 (1998), 49–73 | DOI | MR | Zbl

[9] L.L. Maksimova, “Pretabular superintuitionistic logics”, Algebra Logic, 11:5 (1972), 558–570 | DOI | MR | Zbl

[10] S. Miura, “A remark on the intersection of two logics”, Nagoja Math. J., 26 (1966), 167–171 | DOI | MR | Zbl

[11] S.P. Odintsov, “The lattice of extensions of minimal logic”, Sib. Adv. Math., 17:2 (2007), 112–143 | DOI | MR | Zbl

[12] S.P. Odintsov, “On extensions of Nelson's logic satisfying Dummett's axiom”, Sib. Math. J., 48:1 (2007), 112–125 | DOI | MR | Zbl

[13] S. Odintsov, Constructive negations and paraconsistency, Springer, Dordrecht, 2008 | DOI | MR | Zbl

[14] H. Rasiowa, An algebraic approach to non-classical logics, Studies in Logic and the Foundations of Mathematics, 78, North-Holland Publishing Company, Amsterdam-London; PWN, Warszawa, 1974 https://philpapers.org/rec/RASAAA-2 | Zbl

[15] W. Rautenberg, Klassische und nichtclassische Aussagenlogik, Friedr. Vieweg Sohn, Braunschweig–Wiesbaden, 1979 https://www.amazon.de/Logik-Grundlagen-Mathematik-Band-nichtklassische/dp/3528083859 | MR | Zbl

[16] S.J. Scroggs, “Extensions of the Lewis system S5”, J. Symb. Log., 16 (1951), 112–120 | DOI | MR | Zbl

[17] T. Skolem, “Om konstitutionen av den identiske kalkuls grupper”, Proceedings of the 3rd Scandinavian Mathematical Congress (Kristiania), 1913, 149–163 (English translation in [18])

[18] T. Skolem, Selected Works in Logic, ed. J.E. Fenstad, Universitetsforlaget, Oslo etc., 1970 https://archive.org/details/selectedworksinl0000thsk | MR | Zbl

[19] D. Ulrich, “Decidability results for some classes of propositional calculi”, J. Symb. Log., 35 (1970), 353–354 (as a part of [5])

[20] J. von Plato, “Skolem's discovery of Gödel-Dummett logic”, Stud. Log., 73:1 (2003), 153–157 | DOI | MR | Zbl