On the uniform boundedness of Vallée Poussin means in the system of Meixner polynomials
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 978-989 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Approximation properties of the de la Vallée Poussin means $V_{n+m,N}^\alpha(f,x)$ of Fourier–Meixner sums are studied. In particular, for $an\le m\le bn$ and $n+m\le \lambda N$ the existence of a constant $c(a,b,\alpha,\lambda)$ is established such that $\|V^\alpha_{n+m,N}(f)\|\le c(a,b,\alpha,\lambda)\|f\|$, where $\|f\|$ is the uniform norm of the function $f$ on the grid $\Omega_\delta$.
Keywords: approximation properties, Meixner polynomials, Fourier series
Mots-clés : de la Vallée Poussin means.
@article{SEMR_2024_21_2_a58,
     author = {R. M. Gadzhimirzaev},
     title = {On the uniform boundedness of {Vall\'ee} {Poussin} means in the system of {Meixner} polynomials},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {978--989},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a58/}
}
TY  - JOUR
AU  - R. M. Gadzhimirzaev
TI  - On the uniform boundedness of Vallée Poussin means in the system of Meixner polynomials
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 978
EP  - 989
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a58/
LA  - ru
ID  - SEMR_2024_21_2_a58
ER  - 
%0 Journal Article
%A R. M. Gadzhimirzaev
%T On the uniform boundedness of Vallée Poussin means in the system of Meixner polynomials
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 978-989
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a58/
%G ru
%F SEMR_2024_21_2_a58
R. M. Gadzhimirzaev. On the uniform boundedness of Vallée Poussin means in the system of Meixner polynomials. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 978-989. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a58/

[1] Z.D. Gadzhieva, Mixed Series in Meixner Polynomials, Cand. Sci. (Phys.-Math.) Dissertation, Saratov Gos. Univ., Saratov, 2004

[2] Z.D. Gadzhieva, F.E. Esetov, M.N. Yuzbekova, “Approximation properties of Fourier-Meixner sums on $[0,\infty)$”, Dagestan State Pedagogical University, J. Est.Toch. Nauki, 3(32) (2015), 6–8

[3] R.M. Gadzhimirzaev, “Approximative properties of Fourier-Meixner sums”, Probl. Anal. Issues Anal., 7(25):1 (2018), 23–40 | MR | Zbl

[4] R.M. Gadzhimirzaev, “Estimate of the Lebesgue function of Fourier sums in terms of modified Meixner polynomials”, Math. Notes, 106:4 (2019), 526–536 | DOI | MR | Zbl

[5] I.I. Sharapudinov, I.A. Vagabov, “Convergence of the Vallée Poussin means for Fourier-Jacobi sums”, Math. Notes, 60:4 (1996), 425–437 | DOI | MR | Zbl

[6] I.I. Sharapudinov, “Boundedness in $C[-1,1]$ of the de la Vallée Poussin means for discrete Chebyshev-Fourier sums”, Sb. Math., 187:1 (1996), 141–158 | DOI | MR | Zbl

[7] F.M. Korkmasov, “Approximate properties of the de la Vallée Poussin means for the discrete Fourier-Jacobi sums”, Sib. Math. J., 45:2 (2004), 273–293 | DOI | MR | Zbl

[8] G. Mastroianni, W. Themistoclakis, “De la Vallée Poussin means and Jackson's theorem”, Acta Sci. Math., 74:1-2 (2008), 147–170 | MR | Zbl

[9] W. Themistoclakis, “Weighted $L^1$ approximation on $[-1,1]$ via discrete de la Vallée Poussin means”, Math. Comput. Simul., 147 (2018), 279–292 | DOI | MR | Zbl

[10] I.I. Sharapudinov, Polynomials orthogonal on the grid. Theory and Applications, DSU publishing, Makhachkala, 1997

[11] I.I. Sharapudinov, “Asymptotics and weighted estimates of Meixner polynomials orthogonal on the gird $\{0,\delta, 2\delta, \ldots\}$”, Math. Notes, 62:4 (1997), 501–512 | DOI | MR | Zbl

[12] M. Abramowitz, I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, New York, 1972 | MR

[13] R.M. Gadzhimirzaev, “Approximation properties of de la Vallée Poussin means of partial Fourier series in Meixner-Sobolev polynomials”, Mat. Sbornik, 215:9 (2024), 77–98 | MR