Mots-clés : Hausdorff dimension
@article{SEMR_2024_21_2_a57,
author = {Harsha Gopalakrishnan and Srijanani Anurag Prasad},
title = {Sequential labyrinth fractals},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {882--896},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a57/}
}
Harsha Gopalakrishnan; Srijanani Anurag Prasad. Sequential labyrinth fractals. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 882-896. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a57/
[1] Tim Bedford, Crinkly curves, Markov partitions and dimension, PhD thesis, University of Warwick, 1984 https://wrap.warwick.ac.uk/50539/
[2] C. McMullen, “The Hausdorff dimension of general Sierpiński carpets”, Nagoya Math. J., 96 (1984), 1–9 https://www.cambridge.org/core/journals/nagoya-mathematical-journal/article/hausdorff-dimension-of-general-sierpinski-carpets/344677F454F0B036F781D293013AEA42 | DOI | MR | Zbl
[3] S.P. Lalley, D. Gatzouras, “Hausdorff and box dimensions of certain self-affine fractals”, Indiana Univ. Math. J., 41:2 (1992), 533–568 https://www.jstor.org/stable/24897076?casa_token=SZ1_gjK7FmwAAAAA | DOI | MR | Zbl
[4] Krzysztof Barański, “Hausdorff dimension of the limit sets of some planar geometric constructions”, Adv. Math., 210:1 (2007), 215–245 https://www.sciencedirect.com/science/article/pii/S0001870806001903 | DOI | MR | Zbl
[5] L.L. Cristea, B. Steinsky, “Curves of infinite length in 4$\times$4-labyrinth fractals”, Geom. Dedicata, 141 (2009), 1–17 | DOI | MR | Zbl
[6] L.L. Cristea, B. Steinsky, “Curves of infinite length in labyrinth fractals”, Proc. Edinb. Math. Soc., II. Ser., 54:2 (2011), 329–344 https://www.cambridge.org/core/journals/proceedings-of-the-edinburgh-mathematical-society/article/curves-of-infinite-length-in-labyrinth-fractals/F6BA98E3D2B95929F929DA9458BECBE2 | DOI | MR | Zbl
[7] L.L. Cristea, B. Steinsky, “Mixed labyrinth fractals”, Topology Appl., 229 (2017), 112–125 https://www.sciencedirect.com/science/article/pii/S0166864117303425 | DOI | MR | Zbl
[8] L.L. Cristea, G. Leobacher, “Supermixed labyrinth fractals”, J. Fractal Geom., 7:2 (2020), 183–218 https://ems.press/journals/jfg/articles/16899 | DOI | MR | Zbl
[9] L.L. Cristea, G. Leobacher, “On the length of arcs in labyrinth fractals”, Monatsh. Math., 185:4 (2018), 575–590 | DOI | MR | Zbl
[10] L.L. Cristea, P. Surer, “Triangular labyrinth fractals”, Fractals, 27:8 (2019), 1950131 | DOI | Zbl
[11] Harsha Gopalakrishnan and Srijanani Anurag Prasad, Quadrilateral labyrinth fractals, 2021, arXiv: 2108.11686
[12] A.A. Potapov, V.A. German, V.I. Grachev, “Fractal labyrinths as a basis for reconstruction planar nanostructures”, International Conference on Electromagnetics in Advanced Applications (ICEAA), IEEE, 2013, 949–952 https://ieeexplore.ieee.org/abstract/document/6632380
[13] A.A. Potapov, V.A. German, V.I. Grachev, ““Nano-” and radar signal processing: Fractal reconstruction complicated images, signals and radar backgrounds based on fractal labyrinths”, 14th International Radar Symposium (IRS), IEEE, 2013, 941–946 https://ieeexplore.ieee.org/abstract/document/6581701
[14] A.A. Potapov, W. Zhang., “Simulation of new ultra-wide band fractal antennas based on fractal labyrinths”, CIE International Conference on Radar (RADAR), IEEE, 2016, 1–5 https://ieeexplore.ieee.org/abstract/document/8059186
[15] Alexander Potapov and Victor Potapov, “Fractal radioelement's, devices and systems for radar and future telecommunications: Antennas, capacitor, memristor, smart 2d frequency-selective surfaces, labyrinths and other fractal metamaterials”, J. International Sci. Publications: Materials, Methods Technologies, 11 (2017), 492–512