Sequential labyrinth fractals
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 882-896 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper introduces the concept of a sequential labyrinth fractal constructed on a unit square using two sequences. It also explains how the obtained fractal differs from the classical labyrinth fractal, mixed labyrinth fractal and supermixed labyrinth fractal. The Hausdorff and the box-counting dimension of sequential labyrinth fractals, which are constructed using convergent sequences, are also examined. Besides that, it gives the dimension of fractals on the unit square, which are generated from converging sequences with or without having the labyrinth conditions.
Keywords: fractals, labyrinth fractals, box-counting dimension, sequences.
Mots-clés : Hausdorff dimension
@article{SEMR_2024_21_2_a57,
     author = {Harsha Gopalakrishnan and Srijanani Anurag Prasad},
     title = {Sequential labyrinth fractals},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {882--896},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a57/}
}
TY  - JOUR
AU  - Harsha Gopalakrishnan
AU  - Srijanani Anurag Prasad
TI  - Sequential labyrinth fractals
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 882
EP  - 896
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a57/
LA  - en
ID  - SEMR_2024_21_2_a57
ER  - 
%0 Journal Article
%A Harsha Gopalakrishnan
%A Srijanani Anurag Prasad
%T Sequential labyrinth fractals
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 882-896
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a57/
%G en
%F SEMR_2024_21_2_a57
Harsha Gopalakrishnan; Srijanani Anurag Prasad. Sequential labyrinth fractals. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 882-896. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a57/

[1] Tim Bedford, Crinkly curves, Markov partitions and dimension, PhD thesis, University of Warwick, 1984 https://wrap.warwick.ac.uk/50539/

[2] C. McMullen, “The Hausdorff dimension of general Sierpiński carpets”, Nagoya Math. J., 96 (1984), 1–9 https://www.cambridge.org/core/journals/nagoya-mathematical-journal/article/hausdorff-dimension-of-general-sierpinski-carpets/344677F454F0B036F781D293013AEA42 | DOI | MR | Zbl

[3] S.P. Lalley, D. Gatzouras, “Hausdorff and box dimensions of certain self-affine fractals”, Indiana Univ. Math. J., 41:2 (1992), 533–568 https://www.jstor.org/stable/24897076?casa_token=SZ1_gjK7FmwAAAAA | DOI | MR | Zbl

[4] Krzysztof Barański, “Hausdorff dimension of the limit sets of some planar geometric constructions”, Adv. Math., 210:1 (2007), 215–245 https://www.sciencedirect.com/science/article/pii/S0001870806001903 | DOI | MR | Zbl

[5] L.L. Cristea, B. Steinsky, “Curves of infinite length in 4$\times$4-labyrinth fractals”, Geom. Dedicata, 141 (2009), 1–17 | DOI | MR | Zbl

[6] L.L. Cristea, B. Steinsky, “Curves of infinite length in labyrinth fractals”, Proc. Edinb. Math. Soc., II. Ser., 54:2 (2011), 329–344 https://www.cambridge.org/core/journals/proceedings-of-the-edinburgh-mathematical-society/article/curves-of-infinite-length-in-labyrinth-fractals/F6BA98E3D2B95929F929DA9458BECBE2 | DOI | MR | Zbl

[7] L.L. Cristea, B. Steinsky, “Mixed labyrinth fractals”, Topology Appl., 229 (2017), 112–125 https://www.sciencedirect.com/science/article/pii/S0166864117303425 | DOI | MR | Zbl

[8] L.L. Cristea, G. Leobacher, “Supermixed labyrinth fractals”, J. Fractal Geom., 7:2 (2020), 183–218 https://ems.press/journals/jfg/articles/16899 | DOI | MR | Zbl

[9] L.L. Cristea, G. Leobacher, “On the length of arcs in labyrinth fractals”, Monatsh. Math., 185:4 (2018), 575–590 | DOI | MR | Zbl

[10] L.L. Cristea, P. Surer, “Triangular labyrinth fractals”, Fractals, 27:8 (2019), 1950131 | DOI | Zbl

[11] Harsha Gopalakrishnan and Srijanani Anurag Prasad, Quadrilateral labyrinth fractals, 2021, arXiv: 2108.11686

[12] A.A. Potapov, V.A. German, V.I. Grachev, “Fractal labyrinths as a basis for reconstruction planar nanostructures”, International Conference on Electromagnetics in Advanced Applications (ICEAA), IEEE, 2013, 949–952 https://ieeexplore.ieee.org/abstract/document/6632380

[13] A.A. Potapov, V.A. German, V.I. Grachev, ““Nano-” and radar signal processing: Fractal reconstruction complicated images, signals and radar backgrounds based on fractal labyrinths”, 14th International Radar Symposium (IRS), IEEE, 2013, 941–946 https://ieeexplore.ieee.org/abstract/document/6581701

[14] A.A. Potapov, W. Zhang., “Simulation of new ultra-wide band fractal antennas based on fractal labyrinths”, CIE International Conference on Radar (RADAR), IEEE, 2016, 1–5 https://ieeexplore.ieee.org/abstract/document/8059186

[15] Alexander Potapov and Victor Potapov, “Fractal radioelement's, devices and systems for radar and future telecommunications: Antennas, capacitor, memristor, smart 2d frequency-selective surfaces, labyrinths and other fractal metamaterials”, J. International Sci. Publications: Materials, Methods Technologies, 11 (2017), 492–512