Mots-clés : Hölder's inequality
@article{SEMR_2024_21_2_a55,
author = {J. E. N\'apoles and B. Bayraktar and S. I. Butt},
title = {New generalized weighted fractional variants of {Hermite{\textendash}Hadamard} inequalities with applications},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {684--701},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a55/}
}
TY - JOUR AU - J. E. Nápoles AU - B. Bayraktar AU - S. I. Butt TI - New generalized weighted fractional variants of Hermite–Hadamard inequalities with applications JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 684 EP - 701 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a55/ LA - en ID - SEMR_2024_21_2_a55 ER -
%0 Journal Article %A J. E. Nápoles %A B. Bayraktar %A S. I. Butt %T New generalized weighted fractional variants of Hermite–Hadamard inequalities with applications %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 684-701 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a55/ %G en %F SEMR_2024_21_2_a55
J. E. Nápoles; B. Bayraktar; S. I. Butt. New generalized weighted fractional variants of Hermite–Hadamard inequalities with applications. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 684-701. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a55/
[1] M. Alomari, M. Darus, U.S. Kırmacı, “Refinements of Hadamard-type inequalities for quasi–convex functions with applications to trapezoidal formula and to special means”, Comput. Math. Appl., 59:1 (2010), 225–232 | DOI | MR | Zbl
[2] M. Alomari, M. Darus, “Some Ostrowski type inequalities for convex functions with applications”, RGMIA Res. Rep. Coll., 13:2 (2010), 3 http://ajmaa.org/RGMIA/v13n2.php
[3] M.K. Bakula, M.E. Ödemir, J. Pečarić, “Hadamard type inequalities for for $m$-convex and $(\alpha ,m)$-convex functions”, JIPAM, J. Inequal. Pure Appl. Math., 9:4 (2008), 96 | MR | Zbl
[4] B. Bayraktar, “Some integral inequalities of Hermite-Hadamard type for differentiable $(s,m)-$convex functions via fractional integrals”, TWMS J. App. Eng. Math., 10:3 (2020), 625–637 https://www.researchgate.net/publication/331894522_SOME_INTEGRAL_INEQUALITIES_OF_HERMITE-HADAMARD_TYPE_FOR_DIFFERENTIABLE_s_m-CONVEX_FUNCTIONS_VIA_FRACTIONAL_INTEGRALS | MR
[5] B. Bayraktar, V. Kudaev, “Some new integral inequalities for $(s,m)$-convex and $(\alpha ,m)$-convex functions”, Bull. Karaganda Univ., Mathematics, 94:2 (2019), 15–25 https://mathematics-vestnik.ksu.kz/apart/2019-94-2/2.pdf | DOI
[6] B. Bayraktar, J.E. Nápoles, “New generalized integral inequalities via $(h,m)$-convex modified functions”, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ., 60 (2022), 3–15 | MR | Zbl
[7] B. Bayraktar, J.E. Nápoles, “Hermite–Hadamard weighted integral inequalities for $(h,m)$-convex modified functions”, Fract. Differ. Calc., 12:2 (2022), 235–248 \href{https://fdc.ele-math.com/12-15/Hermite-Hadamard-weighted-integral-inequalities-for-(h,m)-convex-modified-functions}f{https://fdc.ele-math.com/12-15/Hermite-Hadamard-weighted-integral-inequalities-for-(h,m)-convex-modified-functions} | MR | Zbl
[8] S. Bermudo, P. Kórus, J.E. Nápoles, “On $q-$Hermite-Hadamard inequalities for general convex functions”, Acta Math. Hungar., 162 (2020), 364–374 | DOI | MR
[9] S.I. Butt, J. Pečarić, “Generalized Hermite-Hadamard's inequality”, Proc. A. Razmadze Math. Inst., 163 (2013), 9–27 | MR | Zbl
[10] S.I. Butt, S. Yousaf, A.O. Akdemir, M.A. Dokuyucu, “New Hadamard-type integral inequalities via a general form of fractional integral operators”, Chaos, Solitons Fractals, 148 (2021), 111025 | DOI | MR | Zbl
[11] S.I. Butt, S. Yousaf, A. Asghar, K.A. Khan, H.R. Moradi, “New fractional Hermite-Hadamard-Mercer inequalities for harmonically convex function”, J. Funct. Spaces, 2021 (2021), 5868326 | DOI | MR | Zbl
[12] S.S. Dragomir, R.P. Agarwal, “Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula”, Appl. Math. Lett., 11:5 (1998), 91–95 | DOI | MR | Zbl
[13] S.S. Dragomir, C.E.M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2002 | MR
[14] G. Farid, A.U. Rehman, Q.U. Ain, “$k$-fractional integral inequalities of Hadamard type for $(h-m)$-convex functions”, Comput. Methods Differ. Equ., 8:1 (2020), 119–140 | DOI | MR | Zbl
[15] G. Farid, A. Rehman, M. Zahra, “On Hadamard inequalities for $ k$-fractional integrals”, Nonlinear Funct. Anal. Appl., 21:3 (2016), 463–478 | MR | Zbl
[16] P.M. Guzmán, J.E. Nápoles Valdés, Y. Gasimov, “Integral inequalities within the framework of generalized fractional integrals”, Fract. Differ. Calc., 11:1 (2021), 69–84 | DOI | MR | Zbl
[17] H. Hudzik, L. Maligranda, “Some remarks on $s$-convex functions”, Aequationes Math., 48:1 (1994), 100–111 | DOI | MR | Zbl
[18] E. Kikianty, Hermite-Hadamard inequality in the geometry of Banach spaces, Doctor Philosophy Thesis, School of Engineering and Science Faculty of Health, Engineering and Science Victoria University, 2010
[19] U.S. Kırmacı, “Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula”, Appl. Math. Comput., 147:1 (2004), 137–146 | MR | Zbl
[20] M. Muddassar, M.I. Bhatti, W. Irshad, “Generalisation of integral inequalities of Hermite-Hadamard type through convexity”, Bull. Aust. Math. Soc., 88:2 (2013), 320–330 | DOI | MR | Zbl
[21] J.E. Nápoles, B. Bayraktar, “On the generalized inequalities of the Hermite-Hadamard type”, FILOMAT, 35:14 (2021), 4917–4924 | DOI | MR
[22] J.E. Nápoles Valdés, F. Rabossi, A.D. Samaniego, “Convex functions: Ariadne's thread or Charlotte's spiderweb?”, Adv. Math. Models Appl., 5:2 (2020), 176–191
[23] M.E. Özdemir, M. Avc\i, H. Kavurmaci, Hermite-Hadamard type inequalities for $s-$convex and $s-$ concave functions via fractional integrals, 2012, arXiv: 1202.0380 | MR
[24] M.E. Ödemir, S.S. Dragomir, Ç. Yıldız, “The Hadamard's inequality for convex function via fractional integrals”, Acta Math. Sci., Ser. B, Engl. Ed., 33:5 (2013), 1293–1299 | DOI | MR | Zbl
[25] C.E.M. Pearce, J. Pečarić, “Inequalities for differentiable mappings with application to special means and quadrature formulae”, Appl. Math. Lett., 13:2 (2000), 51–55 | DOI | MR | Zbl
[26] F. Qi, T.Y. Zhang, B.Y. Xi, “Hermite-Hadamard type integral inequalities for functions whose first derivatives are of convexity”, Ukr. Math. J., 67:4 (2015), 555–567 | DOI | MR
[27] M.Z. Sarıkaya, N. Aktan, “On the generalization of some integral inequalities and their applications”, Math. Comput. Modelling, 54:9-10 (2011), 2175–2182 | DOI | MR | Zbl
[28] M.Z. Sarıkaya, E. Set, H. Yaldız, N. Başak, “Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities”, Math. Comput. Modelling, 57:9-10 (2013), 2403–2407 | DOI | MR | Zbl
[29] E. Set, S.I. Butt, A.O. Akdemir, A. Karaoglan, T. Abdeljawad, “New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators”, Chaos, Solitons Fractals, 143 (2021), 110554 | DOI | MR
[30] H.M. Srivastava, S. Mehrez, S.M. Sitnik, “Hermite-Hadamard-Type integral inequalities for convex functions and their applications”, Mathematics, 10:17 (2022), 3127 | DOI | MR
[31] G. Toader, “Some generalizations of the convexity”, Approximation and optimization, Proc. Colloq. (Cluj-Napoca/Rom, 1984), 1985, 329–338 | MR | Zbl
[32] M. Tunç, “On new inequalities for $h$-convex functions via Riemann-Liouville fractional integration”, Filomat, 27:4 (2013), 559–565 | DOI | MR | Zbl
[33] M. Tunç, S. Balgeçti, Some inequalities for differentiable convex functions with applications, 2014, arXiv: 1406.7217 | MR
[34] M. Tunç, S. Balgeçti, “Integral inequalities for mappings whose derivatives are $s$-convex in the second sense and applications to special means for positive real numbers”, Turkish J. Analysis Number Theory, 4:2 (2016), 48–53 https://pubs.sciepub.com/tjant/4/2/5/index.html
[35] J.R. Wang, M. Fečkan, Fractional Hermite-Hadamard inequalities, Fractional Calculus in Applied Sciences and Engineering, 5, De Gruyter, Berlin, 2018 | MR | Zbl
[36] B.-Y. Xi, F. Qi, “Inequalities of Hermite-Hadamard type for extended $s$-convex functions and applications to means”, J. Nonlinear Convex Anal., 16:5 (2015), 873–890 | MR | Zbl
[37] B.-Y. Xi, D.D. Gao, F. Qi, “Integral inequalities of Hermite-Hadamard type for $(\alpha,s)$-convex and $(\alpha,s,m)$-convex functions”, Italian J. Pure Appl. Math., 44 (2020), 499–510 https://hal.science/hal-01761678v2
[38] C. Yıldız, M.E. Özdemir, H. Kavurmac\i-Önalan, “Fractional integral inequalities via $s$-convex functions”, Turkish J. Analysis Number Theory, 5:1 (2017), 18–22 https://pubs.sciepub.com/tjant/5/1/4/index.html | MR