New generalized weighted fractional variants of Hermite–Hadamard inequalities with applications
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 684-701 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Integral inequalities play a fundamental role in various mathematical fields, which have led to new methods and theoretical developments, both pure and applied. The need for searching for precise inequalities, in which the notion of convexity plays an important role, has a high impact on approximation theory calculus. In this paper, we first obtained a new version of the weighted fractional identity that led us to obtain new variants of weighted Hermite–Hadamard and Bullen type inequalities. We then presented several refinements of it in the framework of weighted integrals for the modified second type $(h,m)$–convex functions.
Keywords: Hermite–Hadamard integral inequality, Bullen type inequality, $(h,m)-$convex modified functions, weighted fractional integrals operators.
Mots-clés : Hölder's inequality
@article{SEMR_2024_21_2_a55,
     author = {J. E. N\'apoles and B. Bayraktar and S. I. Butt},
     title = {New generalized weighted fractional variants of {Hermite{\textendash}Hadamard} inequalities with applications},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {684--701},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a55/}
}
TY  - JOUR
AU  - J. E. Nápoles
AU  - B. Bayraktar
AU  - S. I. Butt
TI  - New generalized weighted fractional variants of Hermite–Hadamard inequalities with applications
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 684
EP  - 701
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a55/
LA  - en
ID  - SEMR_2024_21_2_a55
ER  - 
%0 Journal Article
%A J. E. Nápoles
%A B. Bayraktar
%A S. I. Butt
%T New generalized weighted fractional variants of Hermite–Hadamard inequalities with applications
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 684-701
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a55/
%G en
%F SEMR_2024_21_2_a55
J. E. Nápoles; B. Bayraktar; S. I. Butt. New generalized weighted fractional variants of Hermite–Hadamard inequalities with applications. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 684-701. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a55/

[1] M. Alomari, M. Darus, U.S. Kırmacı, “Refinements of Hadamard-type inequalities for quasi–convex functions with applications to trapezoidal formula and to special means”, Comput. Math. Appl., 59:1 (2010), 225–232 | DOI | MR | Zbl

[2] M. Alomari, M. Darus, “Some Ostrowski type inequalities for convex functions with applications”, RGMIA Res. Rep. Coll., 13:2 (2010), 3 http://ajmaa.org/RGMIA/v13n2.php

[3] M.K. Bakula, M.E. Ödemir, J. Pečarić, “Hadamard type inequalities for for $m$-convex and $(\alpha ,m)$-convex functions”, JIPAM, J. Inequal. Pure Appl. Math., 9:4 (2008), 96 | MR | Zbl

[4] B. Bayraktar, “Some integral inequalities of Hermite-Hadamard type for differentiable $(s,m)-$convex functions via fractional integrals”, TWMS J. App. Eng. Math., 10:3 (2020), 625–637 https://www.researchgate.net/publication/331894522_SOME_INTEGRAL_INEQUALITIES_OF_HERMITE-HADAMARD_TYPE_FOR_DIFFERENTIABLE_s_m-CONVEX_FUNCTIONS_VIA_FRACTIONAL_INTEGRALS | MR

[5] B. Bayraktar, V. Kudaev, “Some new integral inequalities for $(s,m)$-convex and $(\alpha ,m)$-convex functions”, Bull. Karaganda Univ., Mathematics, 94:2 (2019), 15–25 https://mathematics-vestnik.ksu.kz/apart/2019-94-2/2.pdf | DOI

[6] B. Bayraktar, J.E. Nápoles, “New generalized integral inequalities via $(h,m)$-convex modified functions”, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ., 60 (2022), 3–15 | MR | Zbl

[7] B. Bayraktar, J.E. Nápoles, “Hermite–Hadamard weighted integral inequalities for $(h,m)$-convex modified functions”, Fract. Differ. Calc., 12:2 (2022), 235–248 \href{https://fdc.ele-math.com/12-15/Hermite-Hadamard-weighted-integral-inequalities-for-(h,m)-convex-modified-functions}f{https://fdc.ele-math.com/12-15/Hermite-Hadamard-weighted-integral-inequalities-for-(h,m)-convex-modified-functions} | MR | Zbl

[8] S. Bermudo, P. Kórus, J.E. Nápoles, “On $q-$Hermite-Hadamard inequalities for general convex functions”, Acta Math. Hungar., 162 (2020), 364–374 | DOI | MR

[9] S.I. Butt, J. Pečarić, “Generalized Hermite-Hadamard's inequality”, Proc. A. Razmadze Math. Inst., 163 (2013), 9–27 | MR | Zbl

[10] S.I. Butt, S. Yousaf, A.O. Akdemir, M.A. Dokuyucu, “New Hadamard-type integral inequalities via a general form of fractional integral operators”, Chaos, Solitons Fractals, 148 (2021), 111025 | DOI | MR | Zbl

[11] S.I. Butt, S. Yousaf, A. Asghar, K.A. Khan, H.R. Moradi, “New fractional Hermite-Hadamard-Mercer inequalities for harmonically convex function”, J. Funct. Spaces, 2021 (2021), 5868326 | DOI | MR | Zbl

[12] S.S. Dragomir, R.P. Agarwal, “Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula”, Appl. Math. Lett., 11:5 (1998), 91–95 | DOI | MR | Zbl

[13] S.S. Dragomir, C.E.M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2002 | MR

[14] G. Farid, A.U. Rehman, Q.U. Ain, “$k$-fractional integral inequalities of Hadamard type for $(h-m)$-convex functions”, Comput. Methods Differ. Equ., 8:1 (2020), 119–140 | DOI | MR | Zbl

[15] G. Farid, A. Rehman, M. Zahra, “On Hadamard inequalities for $ k$-fractional integrals”, Nonlinear Funct. Anal. Appl., 21:3 (2016), 463–478 | MR | Zbl

[16] P.M. Guzmán, J.E. Nápoles Valdés, Y. Gasimov, “Integral inequalities within the framework of generalized fractional integrals”, Fract. Differ. Calc., 11:1 (2021), 69–84 | DOI | MR | Zbl

[17] H. Hudzik, L. Maligranda, “Some remarks on $s$-convex functions”, Aequationes Math., 48:1 (1994), 100–111 | DOI | MR | Zbl

[18] E. Kikianty, Hermite-Hadamard inequality in the geometry of Banach spaces, Doctor Philosophy Thesis, School of Engineering and Science Faculty of Health, Engineering and Science Victoria University, 2010

[19] U.S. Kırmacı, “Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula”, Appl. Math. Comput., 147:1 (2004), 137–146 | MR | Zbl

[20] M. Muddassar, M.I. Bhatti, W. Irshad, “Generalisation of integral inequalities of Hermite-Hadamard type through convexity”, Bull. Aust. Math. Soc., 88:2 (2013), 320–330 | DOI | MR | Zbl

[21] J.E. Nápoles, B. Bayraktar, “On the generalized inequalities of the Hermite-Hadamard type”, FILOMAT, 35:14 (2021), 4917–4924 | DOI | MR

[22] J.E. Nápoles Valdés, F. Rabossi, A.D. Samaniego, “Convex functions: Ariadne's thread or Charlotte's spiderweb?”, Adv. Math. Models Appl., 5:2 (2020), 176–191

[23] M.E. Özdemir, M. Avc\i, H. Kavurmaci, Hermite-Hadamard type inequalities for $s-$convex and $s-$ concave functions via fractional integrals, 2012, arXiv: 1202.0380 | MR

[24] M.E. Ödemir, S.S. Dragomir, Ç. Yıldız, “The Hadamard's inequality for convex function via fractional integrals”, Acta Math. Sci., Ser. B, Engl. Ed., 33:5 (2013), 1293–1299 | DOI | MR | Zbl

[25] C.E.M. Pearce, J. Pečarić, “Inequalities for differentiable mappings with application to special means and quadrature formulae”, Appl. Math. Lett., 13:2 (2000), 51–55 | DOI | MR | Zbl

[26] F. Qi, T.Y. Zhang, B.Y. Xi, “Hermite-Hadamard type integral inequalities for functions whose first derivatives are of convexity”, Ukr. Math. J., 67:4 (2015), 555–567 | DOI | MR

[27] M.Z. Sarıkaya, N. Aktan, “On the generalization of some integral inequalities and their applications”, Math. Comput. Modelling, 54:9-10 (2011), 2175–2182 | DOI | MR | Zbl

[28] M.Z. Sarıkaya, E. Set, H. Yaldız, N. Başak, “Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities”, Math. Comput. Modelling, 57:9-10 (2013), 2403–2407 | DOI | MR | Zbl

[29] E. Set, S.I. Butt, A.O. Akdemir, A. Karaoglan, T. Abdeljawad, “New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators”, Chaos, Solitons Fractals, 143 (2021), 110554 | DOI | MR

[30] H.M. Srivastava, S. Mehrez, S.M. Sitnik, “Hermite-Hadamard-Type integral inequalities for convex functions and their applications”, Mathematics, 10:17 (2022), 3127 | DOI | MR

[31] G. Toader, “Some generalizations of the convexity”, Approximation and optimization, Proc. Colloq. (Cluj-Napoca/Rom, 1984), 1985, 329–338 | MR | Zbl

[32] M. Tunç, “On new inequalities for $h$-convex functions via Riemann-Liouville fractional integration”, Filomat, 27:4 (2013), 559–565 | DOI | MR | Zbl

[33] M. Tunç, S. Balgeçti, Some inequalities for differentiable convex functions with applications, 2014, arXiv: 1406.7217 | MR

[34] M. Tunç, S. Balgeçti, “Integral inequalities for mappings whose derivatives are $s$-convex in the second sense and applications to special means for positive real numbers”, Turkish J. Analysis Number Theory, 4:2 (2016), 48–53 https://pubs.sciepub.com/tjant/4/2/5/index.html

[35] J.R. Wang, M. Fečkan, Fractional Hermite-Hadamard inequalities, Fractional Calculus in Applied Sciences and Engineering, 5, De Gruyter, Berlin, 2018 | MR | Zbl

[36] B.-Y. Xi, F. Qi, “Inequalities of Hermite-Hadamard type for extended $s$-convex functions and applications to means”, J. Nonlinear Convex Anal., 16:5 (2015), 873–890 | MR | Zbl

[37] B.-Y. Xi, D.D. Gao, F. Qi, “Integral inequalities of Hermite-Hadamard type for $(\alpha,s)$-convex and $(\alpha,s,m)$-convex functions”, Italian J. Pure Appl. Math., 44 (2020), 499–510 https://hal.science/hal-01761678v2

[38] C. Yıldız, M.E. Özdemir, H. Kavurmac\i-Önalan, “Fractional integral inequalities via $s$-convex functions”, Turkish J. Analysis Number Theory, 5:1 (2017), 18–22 https://pubs.sciepub.com/tjant/5/1/4/index.html | MR