Mots-clés : a priori estimation.
@article{SEMR_2024_21_2_a54,
author = {A. K. Bazzaev},
title = {On the convergence of locally one-dimensional schemes for one nonlocal boundary value problem},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1562--1577},
year = {2024},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a54/}
}
TY - JOUR AU - A. K. Bazzaev TI - On the convergence of locally one-dimensional schemes for one nonlocal boundary value problem JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 1562 EP - 1577 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a54/ LA - ru ID - SEMR_2024_21_2_a54 ER -
A. K. Bazzaev. On the convergence of locally one-dimensional schemes for one nonlocal boundary value problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1562-1577. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a54/
[1] A.A. Samarskii, P.N. Vabishevich, Chislennye metody resheniya zadach konvekcii-diffuzii, Editorial URSS, M., 2015, 246 pp. (In Russian)
[2] L.I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, U.S.S.R. Comput. Math. Math. Phys., 4:6 (1964), 33–59 | DOI
[3] A.F. Chudnovskii, “Some corrections in the formulation and solution of problems of heat and moisture transfer in soil”, Collection of Proceedings of the Agrophysical Institute, 23 (1969), 41–54 (In Russian)
[4] A.V. Bitsadze, A.A. Samarskii, “On some simple generalizations of linear elliptic boundary problems”, Sov. Math., Dokl., 10 (1969), 398–400 | Zbl
[5] N.I. Ionkin, “Solution of a boundary-value problem in heat conduction with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–304 | Zbl
[6] N.I. Ionkin, “Uniform convergence of the difference scheme for one nonstationary nonlocal boundary-value problem”, Comput. Math. Model., 2:3 (1991), 223–328 | DOI | Zbl
[7] V.A. Il'in, E.I. Moiseev, “A nonlocal boundary value problem for the Sturm-Liouville operator in the differential and difference treatments”, Sov. Math., Dokl., 34 (1987), 507–511 | Zbl
[8] N.I. Ionkin, E.I. Moiseev, “A problem for a heat equation with two-point boundary conditions”, Differ. Uravn., 15:7 (1979), 1284–1295 | Zbl
[9] D.G. Gordeziani, On the methods of solution for one class of non-local boundary value problems, Izdatel'stvo Tbilisskogo Universiteta, Tbilisi, 1981 | Zbl
[10] A.M. Nakhushev, “A nonlocal problem and the Goursat problem for a loaded equation of hyperbolic type, and their applications to the prediction of ground moisture”, Sov. Math., Dokl., 19 (1978), 1243–1247 | Zbl
[11] A.P. Soldatov, M. Kh. Shkhanukov, “Boundary value problems with general nonlocal Samarskij condition for pseudoparabolic equations of higher order”, Sov. Math., Dokl., 36:3 (1988), 507–511 | Zbl
[12] A.A. Samarskii, “Some problems in differential equation theory”, Differ. Equations, 16 (1981), 1221–1228 | Zbl
[13] A.A. Samarskii, Theory of difference schemes, Nauka, M., 1977 | Zbl
[14] V.N. Abrashin, V.A. Asmolik, “Locally one-dimensional difference schemes for multidimensional quasilinear hyperbolic equations”, Differ. Equations, 18 (1983), 767–774 | Zbl
[15] I.V. Fryazinov, “On difference approximation of boundary conditions for the third boundary value problem”, Zh. Vychisl. Mat. Mat. Fiz., 4:6 (1964), 1106–1112
[16] A.K. Bazzaev, “Local one-dimensional scheme for the third boundary value problem for the heat equation”, Vladikavkaz. Mat. Zh., 13:1 (2011), 3–12 https://eudml.org/doc/224684 | Zbl
[17] A.K. Bazzaev, D.K. Gutnova, D.K.,M.Kh. Shkhanukov-Lafishev, “Locally one-dimensional scheme for parabolic equations with a nonlocal condition”, Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012), 1048–1057 | Zbl
[18] Z. V. Beshtokova, “Locally one-dimensional scheme for parabolic equation of general type with nonlocal source”, News of the Kabardin-Balkar scientific center of RAS, 3 (2017), 5–12
[19] Z.V. Beshtokova, “Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form”, Dal'nevost. Mat. Zh., 22:1 (2022), 3–27 | DOI | Zbl
[20] Z.V. Beshtokova, “Stability and convergence of the locally one-dimensional scheme A. A. Samarskii, approximating the multidimensional integro-differential equation of convection-diffusion with inhomogeneous boundary conditions of the first kind”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 27:3 (2023), 407–426 | DOI | Zbl
[21] A.K. Bazzaev, M.Kh. Shkhanukov-Lafishev, “Locally one-dimensional scheme for fractional diffusion equations with Robin boundary conditions”, Comput. Math. Math. Phys., 50:7 (2010), 1141–1149 | DOI | Zbl
[22] A.K. Bazzaev, A.V. Mambetova, M.Kh. Shkhanukov-Lafishev, “Locally one-dimensional scheme for the heat equation of fractional order with concentrated heat capacity”, Zh. Vychisl. Mat. Mat. Fiz., 52:9 (2012), 1656–1665 | Zbl
[23] A.K. Bazzaev, M.Kh. Shkhanukov-Lafishev, “Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain”, Comput. Math. Math. Phys., 56:1 (2016), 106–115 | DOI | Zbl
[24] A.K. Bazzaev, M.Kh. Shhanukov-Lafishev, “On the convergence of difference schemes for fractional differential equations with Robin boundary conditions”, Comput. Math. Math. Phys., 57:1 (2017), 133–144 | DOI | Zbl
[25] V.B. Andreev, “On the convergence of difference schemes approximating the second and third boundary value problems for elliptic equations”, Zh. Vychisl. Mat. Mat. Fiz., 8:6 (1968), 1218–1231 | Zbl
[26] A.A. Samarskii, A.V. Gulin, Stability of difference schemes, Nauka, M., 1973 | Zbl
[27] D.K. Faddeev, V.N. Faddeeva, Numerical methods of linear algebra, Fizmatgiz, M., 1960 | Zbl