Temporal localization of moving sources in homogeneous media using the Time Reversal Mirror
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1314-1325 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study is devoted to solving the problem of recovering the trajectory of a seismic source moving underground. The Time Reversal Mirror (TRM) method, which is based on the principle of reversibility of wave processes in media without attenuation, is proposed as a solution. In this paper, different approaches to source trajectory recovery and visualisation are investigated. The algorithms are tested on synthetic data. The results show that TRM is an effective approach to accurately reconstruct the trajectory of a moving source, even when the observational data are incomplete.
Keywords: seismic source, numerical modeling, Time Reversal Mirror.
Mots-clés : wave propagation
@article{SEMR_2024_21_2_a53,
     author = {G. Reshetova and V. Koinov},
     title = {Temporal localization of moving sources in homogeneous media using the {Time} {Reversal} {Mirror}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1314--1325},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a53/}
}
TY  - JOUR
AU  - G. Reshetova
AU  - V. Koinov
TI  - Temporal localization of moving sources in homogeneous media using the Time Reversal Mirror
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1314
EP  - 1325
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a53/
LA  - en
ID  - SEMR_2024_21_2_a53
ER  - 
%0 Journal Article
%A G. Reshetova
%A V. Koinov
%T Temporal localization of moving sources in homogeneous media using the Time Reversal Mirror
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1314-1325
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a53/
%G en
%F SEMR_2024_21_2_a53
G. Reshetova; V. Koinov. Temporal localization of moving sources in homogeneous media using the Time Reversal Mirror. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1314-1325. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a53/

[1] F. Waldhauser, W.L. Ellsworth, “A double-difference earthquake location algorithm: Method and application to the northern hayward fault, California”, Bulletin of the Seismological Society of America, 90:6 (2000), 1353–1368 | DOI

[2] A. Tarantola, “Inversion of seismic reflection data in the acoustic approximation”, Geophysics, 49:8 (1984), 1259–1266 | DOI

[3] H. Kanamori, L. Rivera, Energy partitioning during an earthquake, Geophysical Monograph, 170, 2006 | DOI

[4] J. Virieux, “P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophysics, 51:4 (1986), 889–901 | DOI

[5] M. Fink, F. Wu, D. Cassereau, R. Mallart, “Imaging through inhomogeneous media using time reversal mirrors”, Ultrasonic Imaging, 13:2 (1991), 199 | DOI

[6] M. Fink, “Time reversal in acoustics”, Contemporary Phys., 37:2 (1996), 95–109 | DOI

[7] M. Fink, “Time-reversed acousticse”, Scientific American, 281:5 (1999), 91–97 http://www.jstor.org/stable/26058488 | DOI

[8] M. Fink, C. Prada, “Acoustic time-reversal mirrors”, Inverse Probl., 17:1 (2001), 1–38 | DOI | Zbl

[9] M. Fink, G. Montaldo, M. Tanter, “Time-reversal acoustics in biomedical engineering”, Annual Review Biomedical Engin., 5 (2003), 465–497 | DOI

[10] D.J. Isles, L.R. Rankin, Geological interpretation of aeromagnetic data, Australian Society of Exploration Geophysicists, 2013 | DOI

[11] M. Fink, G. Montaldo, M. Tanter, “Ultrasonic time reversal mirrors”, AIP Conf. Proc., 728:1 (2004), 514–521 | DOI

[12] J. Gateau, L. Marsac, M. Pernot, J.-F. Aubry, M. Tanter, M. Fink, “Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature”, IEEE Trans Biomed Eng., 57:1 (2010), 134–144 | DOI

[13] M.E. Willis, R. Lu, X. Campman, M.N. Toksöz, Y. Zhang, M.V. de Hoop, “A novel application of time-reversed acoustics: Salt-dome flank imaging using walkaway VSP surveys”, Geophysics, 71:2 (2006), A7–A11 | DOI

[14] P. Roux, A. Derode, A. Peyre, A. Tourin, M. Fink, “Acoustical imaging through a multiple scattering medium using a time-reversal mirror”, J. Acoust. Soc. Am., 107:2 (2000), L7–L12 | DOI

[15] W.S. Gan, “Application of time-reversal acoustics to ultrasound non-destructive testing”, Time Reversal Acoustics, Springer, Singapore, 2021, 95–99 | DOI

[16] Yin Jingwei, Zhang Xiao, Guo Longxiang, Sheng Xueli, “Application of time reverse mirror in underwater acoustic networks communication”, J. Acoust. Soc. Am., 131:4, Supplement (2012), 3350 | DOI

[17] W.-w. Wang, J.-s. Hong, G.-m. Zhang, B.-z. Wang, “Node localization based on time reversal in wireless sensor network”, International Conference on Microwave and Millimeter Wave Technology (Chengdu, China), 2010, 81–83 | DOI

[18] G.V. Reshetova, A.V. Anchugov, “Digital core: simulation of acoustic emission in order to localize its sources by the method of wave field reversal in reverse time”, Geology Geophysics, 2021:4 (2021), 597–609 | DOI

[19] R.W. Graves, “Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences”, Bulletin Seismological Society America, 86:4 (1996), 1091–1106 | DOI

[20] A.R. Levander, “Fourth-order finite-difference P-W seismograms”, Geophysics, 53:11 (1988), 1425–1436 | DOI

[21] Novosibirsk Supercomputer Center of SB RAS, http://www.sscc.icmmg.nsc.ru