Approximation of a function by polynomials in the presence of a region of large gradients
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1108-1117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The issue of approximating functions of one and two variables by polynomials in the presence of a region of large gradients is considered. The problem is that when applying Taylor's formula, the residual term can be significant if the function has large gradients. It is assumed that the function has a decomposition in the form of a sum of regular and boundary layer components. The boundary layer components are known up to a factor. This decomposition is valid for the solution of a singularly perturbed boundary value problem. The derivatives of the regular component are bounded to a certain order, and the boundary layer components have large gradients. Formulas for approximating a function by polynomials of an arbitrarily specified degree are constructed based on the fact that these formulas are exact for the boundary layer components. This approach has not been previously explored. Error estimates that are uniform in the boundary layer components are obtained.
Keywords: function of one or two variables, boundary layer components, approximation by polynomials
Mots-clés : large gradients, error estimation.
@article{SEMR_2024_21_2_a50,
     author = {A. I. Zadorin},
     title = {Approximation of a function by polynomials in the presence of a region of large gradients},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1108--1117},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a50/}
}
TY  - JOUR
AU  - A. I. Zadorin
TI  - Approximation of a function by polynomials in the presence of a region of large gradients
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1108
EP  - 1117
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a50/
LA  - en
ID  - SEMR_2024_21_2_a50
ER  - 
%0 Journal Article
%A A. I. Zadorin
%T Approximation of a function by polynomials in the presence of a region of large gradients
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1108-1117
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a50/
%G en
%F SEMR_2024_21_2_a50
A. I. Zadorin. Approximation of a function by polynomials in the presence of a region of large gradients. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1108-1117. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a50/

[1] V.A. Zorich, Mathematical analysis, v. I, Springer, Berlin, 2015 | Zbl

[2] G.I. Shishkin, Grid approximations of singularly perturbed elliptic and parabolic equations, Russian Academy of Sciences, Ural Branch, Ekaterinburg, 1992 | Zbl

[3] R.B. Kellogg, A. Tsan, “Analysis of some difference approximations for a singular perturbation problem without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | Zbl

[4] H.-G. Roos, M. Stynes, L. Tobiska, Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems, Springer, Berlin, 2008 | Zbl

[5] A.I. Zadorin, “Application of a Taylor series to approximate a function with large gradients”, Sib. Èlectron. Mat. Izv., 20:2 (2023), 1420–1429 http://semr.math.nsc.ru/v20/n2/p1420-1429.pdf | Zbl

[6] R. Vulanović, “On numerical solution of a power layer problem”, Proc. III Conference on Numerical Methods and Approximation Theory (University of Niš, 1987), 1988, 423–431 | Zbl

[7] V.P. Il'in , A.I Zadorin, “Adaptive formulas of numerical differentiation of functions with large gradients”, J. Phys.: Conf. Ser., 1260:4 (2019), 042003 | DOI

[8] A.I. Zadorin , N.A. Zadorin, “Non-polynomial interpolation of functions with large gradients and its application”, Comput. Math. Math. Phys., 61:2 (2021), 167–176 | DOI | Zbl