Mots-clés : large gradients, error estimation.
@article{SEMR_2024_21_2_a50,
author = {A. I. Zadorin},
title = {Approximation of a function by polynomials in the presence of a region of large gradients},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1108--1117},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a50/}
}
TY - JOUR AU - A. I. Zadorin TI - Approximation of a function by polynomials in the presence of a region of large gradients JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 1108 EP - 1117 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a50/ LA - en ID - SEMR_2024_21_2_a50 ER -
A. I. Zadorin. Approximation of a function by polynomials in the presence of a region of large gradients. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1108-1117. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a50/
[1] V.A. Zorich, Mathematical analysis, v. I, Springer, Berlin, 2015 | Zbl
[2] G.I. Shishkin, Grid approximations of singularly perturbed elliptic and parabolic equations, Russian Academy of Sciences, Ural Branch, Ekaterinburg, 1992 | Zbl
[3] R.B. Kellogg, A. Tsan, “Analysis of some difference approximations for a singular perturbation problem without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | Zbl
[4] H.-G. Roos, M. Stynes, L. Tobiska, Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems, Springer, Berlin, 2008 | Zbl
[5] A.I. Zadorin, “Application of a Taylor series to approximate a function with large gradients”, Sib. Èlectron. Mat. Izv., 20:2 (2023), 1420–1429 http://semr.math.nsc.ru/v20/n2/p1420-1429.pdf | Zbl
[6] R. Vulanović, “On numerical solution of a power layer problem”, Proc. III Conference on Numerical Methods and Approximation Theory (University of Niš, 1987), 1988, 423–431 | Zbl
[7] V.P. Il'in , A.I Zadorin, “Adaptive formulas of numerical differentiation of functions with large gradients”, J. Phys.: Conf. Ser., 1260:4 (2019), 042003 | DOI
[8] A.I. Zadorin , N.A. Zadorin, “Non-polynomial interpolation of functions with large gradients and its application”, Comput. Math. Math. Phys., 61:2 (2021), 167–176 | DOI | Zbl