Chainable properties of semigroups of nonnegative matrices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 810-822 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theorem by Protasov and Voynov on the combinatorial structure of semigroups of nonnegative matrices extends a well-known result of Frobenius on the canonical form of an irreducible nonnegative matrix. We generalize the Protasov — Voynov theorem to not necessarily irreducible semigroups of matrices. For this purpose, an extensions of the concepts of imprimitivity index and canonical partition are introduced which are based on the chain properties of nonnegative matrices.
Keywords: chainable index.
Mots-clés : nonnegative matrices, chainable matrices
@article{SEMR_2024_21_2_a5,
     author = {Yu. A. Alpin and A. E. Guterman and E. R. Shafeev},
     title = {Chainable properties of semigroups of nonnegative matrices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {810--822},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a5/}
}
TY  - JOUR
AU  - Yu. A. Alpin
AU  - A. E. Guterman
AU  - E. R. Shafeev
TI  - Chainable properties of semigroups of nonnegative matrices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 810
EP  - 822
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a5/
LA  - en
ID  - SEMR_2024_21_2_a5
ER  - 
%0 Journal Article
%A Yu. A. Alpin
%A A. E. Guterman
%A E. R. Shafeev
%T Chainable properties of semigroups of nonnegative matrices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 810-822
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a5/
%G en
%F SEMR_2024_21_2_a5
Yu. A. Alpin; A. E. Guterman; E. R. Shafeev. Chainable properties of semigroups of nonnegative matrices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 810-822. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a5/

[1] Yu.A. Al'pin, Nonnegative matrices, Kazan. Fed. University, Kazan, 2015

[2] Al'pin Yu. A., Al'pina V.S., “A new proof of the Protasov-Voynov theorem on semigroups of nonnegative matrices”, Math. Notes, 105:6 (2019), 805–811 | DOI | MR | Zbl

[3] Yu.A. Alpin, V.S. Alpina, “Combinatorial properties of entire semigroups of nonnegative matrices”, J. Math. Sci., New York, 207:5 (2015), 674–685 | DOI | MR | Zbl

[4] Yu.A. Alpin, I.V. Bashkin, “Nonnegative chainable matrices”, J. Math. Sci., New York, 255:3 (2021), 217–230 | DOI | MR | Zbl

[5] Yu.A. Alpin, A.E. Guterman, E.R. Shafeev, “An upper bound for the chainable index”, J. Math. Sci., New York, 272:4 (2023), 487–495 | DOI | MR | Zbl

[6] F.R. Gantmacher, Theory of matrices, Nauka, Moscow, 1966 | MR | Zbl

[7] D.J. Hartfiel, C.J. Maxson, “The chainable matrix, a special combinatorial matrix”, Discrete Math., 12 (1975), 245–256 | DOI | MR | Zbl

[8] V.Yu. Protasov, A.S. Voynov, “Sets of nonnegative matrices without positive products”, Linear Algebra Appl., 437:3 (2012), 749–765 | DOI | MR | Zbl