A nonlinear Input-Output model with capacitiy constraints
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 654-668 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper proposes a nonlinear mathematical model of intersectoral balance considering economic constraints. The model generalizes the traditional linear Leontief input-output model and is formalized as an optimal resource allocation problem with neoclassical production functions and constraints on sectoral production capacities. We formulate and investigate the problem of finding competitive equilibrium in the space of goods and prices. The constraint on production capacities leads to additional costs in the network associated with production shortages. We apply Young duality approach and Fenchel duality theory for a dual problem construction to describe the formation of equilibrium prices in the model accounting for additional costs. Possible operating modes of an open production network with limited production capacities are analyzed.
Keywords: input-output analysis, production function, substitution of inputs, competitive equilibrium, Young duality, resource allocation problem, Fenchel duality theorem.
@article{SEMR_2024_21_2_a48,
     author = {N. Obrosova and A. Shananin},
     title = {A nonlinear {Input-Output} model with capacitiy constraints},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {654--668},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a48/}
}
TY  - JOUR
AU  - N. Obrosova
AU  - A. Shananin
TI  - A nonlinear Input-Output model with capacitiy constraints
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 654
EP  - 668
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a48/
LA  - ru
ID  - SEMR_2024_21_2_a48
ER  - 
%0 Journal Article
%A N. Obrosova
%A A. Shananin
%T A nonlinear Input-Output model with capacitiy constraints
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 654-668
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a48/
%G ru
%F SEMR_2024_21_2_a48
N. Obrosova; A. Shananin. A nonlinear Input-Output model with capacitiy constraints. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 654-668. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a48/

[1] A.A. Shananin, “Young duality and aggregation of balances”, Dokl. Math., 102:1 (2020), 330–333 | DOI | MR | Zbl

[2] A.A. Shananin, “Problem of aggregating of an input-output model and duality”, Comput. Math. Math. Phys., 61:1 (2021), 153–166 | DOI | MR | Zbl

[3] N.K. Obrosova, A.A. Shananin, “Young duality of variational inequalities. An application for the analysis of interactions in production networks”, Proc. Steklov Inst. Math., 323, Suppl. 1 (2023), S194–S210 | DOI | MR | Zbl

[4] W.W. Leontief, “Quantitative input-output relations in the economic system of the United States”, Review of Economics and Statistics, 18:3 (1936), 105–125 | DOI

[5] W.W. Leontief, The structure of American economy, 1919-1939: An empirical application of equilibrium analysis, Oxford University Press, Oxford, 1951 | DOI

[6] R.E. Miller, P.D. Blair, Input-output analysis. Foundations and extensions, 2nd ed., Cambridge University Press, 2009 | DOI | MR | Zbl

[7] Y.V. Yaremenko, Teoriia i metodologiia issledovaniia mnogourovnevoi ekonomiki, Nauka, 2000 https://ecfor.ru/wp-content/uploads/2018/11/yaremenko-yu.v.-teoriya-i-metodologiya-issledovaniya-mnogourovnevoj-ekonomiki.pdf

[8] I.W. Sandberg, “A Nonlinear Input-Output Model of a Multisectored Economy”, Econometrica, 41:6 (1973), 1167–1182 | DOI | MR | Zbl

[9] A. Boranbayev, N. Obrosova, A. Shananin, “Technology of input-output analysis with CES production: Application for studying the Kazakhstan supply chain during the COVID-19 pandemic”, Sustainability, 15:19 (2023), 14057 | DOI

[10] D. Acemoglu, A. Ozdaglar, A. Tahbaz-Salehi, Cascades in networks and aggregate volatility, NBER Working Papers No 16516, National Bureau of Economic Research, Inc., Cambridge, 2010 | DOI

[11] D. Acemoglu, V.M. Carvalho, A. Ozdaglar, A. Tahbaz-Salehi, “The network origins of aggregate fluctuations”, Econometrica, 80:5 (2012), 1977–2016 | DOI | MR | Zbl

[12] D. Acemoglu, A. Ozdaglar, A. Tahbaz-Salehi, “Microeconomic origins of macroeconomic tail risks”, American Economic Review, 107:1 (2017), 54–108 | DOI

[13] D.R. Baqaee, “Cascading failures in production networks”, Econometrica, 86:5 (2018), 1819–1838 | DOI | MR | Zbl

[14] V.M. Carvalho, A. Tahbaz-Salehi, “Production networks: a primer”, Annual Review of Economics, 11 (2019), 635–663 | DOI

[15] H. Nikaido, Convex structures and economic theory, Academic Press, New York-London, 1968 | MR | Zbl