Keywords: Navier-Stokes equations, Volume of Fluid, marine propeller, open water test, Logos software package.
@article{SEMR_2024_21_2_a47,
author = {K. S. Plygunova},
title = {Numerical study of the effect of the free surface on the hydrodynamic characteristics of the model and full-scale marine propeller},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {621--644},
year = {2024},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a47/}
}
TY - JOUR AU - K. S. Plygunova TI - Numerical study of the effect of the free surface on the hydrodynamic characteristics of the model and full-scale marine propeller JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 621 EP - 644 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a47/ LA - ru ID - SEMR_2024_21_2_a47 ER -
%0 Journal Article %A K. S. Plygunova %T Numerical study of the effect of the free surface on the hydrodynamic characteristics of the model and full-scale marine propeller %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 621-644 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a47/ %G ru %F SEMR_2024_21_2_a47
K. S. Plygunova. Numerical study of the effect of the free surface on the hydrodynamic characteristics of the model and full-scale marine propeller. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 621-644. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a47/
[1] J.S. Carlton, Marine propellers and propulsion, 2nd edition, Linacre House, Jordan HillLinacre House, Jordan Hill, Oxford, 2007
[2] V. Bertram, Practical ship hydrodynamics, Linacre House, Jordan HillLinacre House, Jordan Hill, Oxford, 2000
[3] Dr. Didier Frechou (ed.), “The Resistance and Propulsion Committee: Final report and recommendations to the 29th ITTC”, Proceedings of the 29th International Towing Tank Conference (June 13-18, 2021), 2021
[4] V.F. Bavin, V.I. Zaikov, V.G. Pavlenko, L.B. Sandler, Ship popularity and manoeuvrability, Textbook for universities, Transport, M., 1991
[5] C.Y. Guo, D.G. Zhao, Y. Sun, “Numerical simulation and experimental research on hydrodynamic performance of propeller with varying shaft depths”, China Ocean Eng., 28 (2014), 271–282 | DOI
[6] Q. Zhao, C. Guo, Y. Su, T. Liu, X. Meng, “Study on unsteady hydrodynamic performance of propeller in waves”, J. Marine Sci. Appl., 16 (2017), 305–312 | DOI
[7] K.-J. Paik, “Numerical study on the hydrodynamic characteristics of a propeller operating beneath a free surface”, Inter. J. Naval Architecture Ocean Eng., 9:6 (2017), 655–667 | DOI
[8] A. Taranov, M. Lobachev, “Influence of the laminar-turbulent transition on the accuracy of the propeller characteristics prediction in the model scale”, Proceedings of the 2015 International Conference on Mechanics–Seventh Polyakhov's Reading (Saint Petersburg, Russia, 2-6 February, 2015), 2015, 243–246
[9] J. Baltazar, D. Rijpkema, J.A.C. Falcão de Campos, “On the use of the $\gamma - {\mathop{\rm Re}\nolimits_\theta}$ transition model for the prediction of the propeller performance at model-scale”, Proceedings of the Fifth International Symposium on Marine Propulsors (Espoo, Finland, 12-15 June 2017), ed. Antonio Sánchez-Caja, VTT Technical Research Center of Finland Ltd, 2017, MB2.1
[10] C.G. Grlj, N. Degiuli, A. Farkas, I. Martić, “Numerical study of scale effects on open water propeller performance”, J. Mar. Sci. Eng., 10:8 (2022), 10081132 | DOI
[11] X.-Q. Dong, W. Li, C.-J. Yang, F. Noblesse, “RANSE-based simulation and analysis of scale effects on open-water performance of the PPTC-II benchmark propeller”, J. Ocean Eng. Sci., 3:3 (2018), 186–204 | DOI
[12] A. Kozelkov, V. Kurulin, A. Kurkin, A. Taranov, K. Plygunova, O. Krutyakova, A. Korotkov, “Numerical approach based on solving 3D Navier-Stokes equations for simulation of the marine propeller flow problems”, Fluids, 8:11 (2023), 293 | DOI
[13] F.R. Menter, M. Kuntz, R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model”, Turbulence, heat and mass transfer, Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, v. 4, Begell House Inc., West Redding, 2003, 625–632
[14] F.R. Menter, R.B. Langtry, S.R. Likki, Y.B. Suzen, P.G. Huang, S.A. Volker, “Correlation-based transition model using local variables—Part 1: Model formulation”, J. Turbomach., 128:3 (2006), 413–422 | DOI
[15] C.W. Hirt, B.D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Comput. Phys., 39 (1981), 201–225 | DOI | Zbl
[16] A. Korotkov, A. Kozelkov, “Three-dimensional numerical simulations of fluid dynamics problems on grids with nonconforming interfaces”, Sib. Èlectron Mat. Izv., 19:2 (2022), 1038–1053 | MR
[17] A. Kozelkov, A. Kurkin, V. Kurulin, K. Plygunova, O. Krutyakova, “Validation of the LOGOS software package methods for the numerical simulation of cavitational flows”, Fluids, 8 (2023), 104 | DOI
[18] A.V. Sarazov, A.S. Kozelkov, D.Yu. Strelets, R.N. Zhuchkov, “Modeling object motion on arbitrary unstructured grids using an invariant principle of computational domain topology: Key features”, J. Symmetry, 15:11 (2023), 2081 | DOI
[19] A.S. Kozelkov, N.G. Galanov, I.V. Semenov, R.N. Zhuchkov, D.Yu. Strelets, “Computational investigation of the water droplet effects on shapes of ice on airfoils”, J. Aerospace, 10:10 (2023), 906 | DOI
[20] J.H. Ferziger, M. Perić, Computational methods for fluid dynamics, Springer, Berlin, 2002 | MR | Zbl
[21] C. Fletcher, Computational techniques for fluid dynamics, in two books, Mir, M., 1991 | MR | Zbl
[22] K.N. Volkov, V.N. Emelyanov, Large eddy simulations in calculations of turbulent flows, Fizmatlit, M., 2008
[23] P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.Kh. Strelets, A. Travin, “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theor. Comput. Fluid Dyn., 20:3 (2006), 181–195 | DOI | Zbl
[24] E. Yari, H. Ghassemi, “Numerical study of surface tension effect on the hydrodynamic modeling of the partially submerged propeller's blade section”, J. Mechanics, 32:5 (2016), 653–664 | DOI
[25] C. Yvin, P. Muller, K. Koushan, “Numerical study of propeller ventilation”, Proceedings of the Fifth International Symposium on Marine Propulsors (Espoo, Finland, 12-15 June, 2017), 2017
[26] L.G. Loitsyanskii, Fluid and gas mechanics, GITTL, M., 1950 ; Pergamon Press, 1972 | MR | Zbl
[27] A.S. Kozelkov, V.V. Kurulin, S.V. Lashkin, R.M. Shagaliev, A.V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications”, Comput. Math. Math. Phys., 56:8 (2016), 1506–1516 | DOI | MR | Zbl
[28] A Workshop on CFD in Ship Hydrodynamics (National Maritime Research Institute (NMRI), Tokyo), 2015 http://www.t2015.nmri.go.jp
[29] A. Taranov, “Determination of local and integral parameters for container cargo carrier in digital basin”, Transactions of the Krylov State Research Centre, 389:3 (2019), 73–82 | DOI
[30] 1978 ITTC - Recommended Procedures and Guidelines: ITTC Performance Prediction Method, Revision 04, 2017 https://www.ittc.info/media/8017/75-02-03-014.pdf