Numerical study of the effect of the free surface on the hydrodynamic characteristics of the model and full-scale marine propeller
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 621-644 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article examines the effect of the free surface on the hydrodynamic characteristics of the propeller by numerical simulation in Logos software package. The numerical approach is based on a three-dimensional system of Reynolds averaged Navier-Stokes equations, which is closed by the SST Menter turbulence model together with the laminar-turbulent transition model $\gamma - {{\mathop{\rm Re}\nolimits} _\theta }$. The Volume of Fluid method is used to account for the free surface. A rotating propeller is simulated by a moving computational mesh and flow interpolation through a mesh interface. The method validation results are given, they were obtained on the problem of finding the open water performance of model-scale propeller KP505. The results of numerical simulation of a model and full-scale operating propeller with different depth of immersion are presented. It has been shown that the small immersion depth of the propeller most strongly affects the propeller performance at the small advance coefficient due to the occurrence of aeration. The obtained thrust and efficiency of the full-scale propeller are higher than the model coefficients, which is also observed for propellers operating under open water conditions without a free surface.
Mots-clés : CFD, scale effect
Keywords: Navier-Stokes equations, Volume of Fluid, marine propeller, open water test, Logos software package.
@article{SEMR_2024_21_2_a47,
     author = {K. S. Plygunova},
     title = {Numerical study of the effect of the free surface on the hydrodynamic characteristics of the model and full-scale marine propeller},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {621--644},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a47/}
}
TY  - JOUR
AU  - K. S. Plygunova
TI  - Numerical study of the effect of the free surface on the hydrodynamic characteristics of the model and full-scale marine propeller
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 621
EP  - 644
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a47/
LA  - ru
ID  - SEMR_2024_21_2_a47
ER  - 
%0 Journal Article
%A K. S. Plygunova
%T Numerical study of the effect of the free surface on the hydrodynamic characteristics of the model and full-scale marine propeller
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 621-644
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a47/
%G ru
%F SEMR_2024_21_2_a47
K. S. Plygunova. Numerical study of the effect of the free surface on the hydrodynamic characteristics of the model and full-scale marine propeller. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 621-644. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a47/

[1] J.S. Carlton, Marine propellers and propulsion, 2nd edition, Linacre House, Jordan HillLinacre House, Jordan Hill, Oxford, 2007

[2] V. Bertram, Practical ship hydrodynamics, Linacre House, Jordan HillLinacre House, Jordan Hill, Oxford, 2000

[3] Dr. Didier Frechou (ed.), “The Resistance and Propulsion Committee: Final report and recommendations to the 29th ITTC”, Proceedings of the 29th International Towing Tank Conference (June 13-18, 2021), 2021

[4] V.F. Bavin, V.I. Zaikov, V.G. Pavlenko, L.B. Sandler, Ship popularity and manoeuvrability, Textbook for universities, Transport, M., 1991

[5] C.Y. Guo, D.G. Zhao, Y. Sun, “Numerical simulation and experimental research on hydrodynamic performance of propeller with varying shaft depths”, China Ocean Eng., 28 (2014), 271–282 | DOI

[6] Q. Zhao, C. Guo, Y. Su, T. Liu, X. Meng, “Study on unsteady hydrodynamic performance of propeller in waves”, J. Marine Sci. Appl., 16 (2017), 305–312 | DOI

[7] K.-J. Paik, “Numerical study on the hydrodynamic characteristics of a propeller operating beneath a free surface”, Inter. J. Naval Architecture Ocean Eng., 9:6 (2017), 655–667 | DOI

[8] A. Taranov, M. Lobachev, “Influence of the laminar-turbulent transition on the accuracy of the propeller characteristics prediction in the model scale”, Proceedings of the 2015 International Conference on Mechanics–Seventh Polyakhov's Reading (Saint Petersburg, Russia, 2-6 February, 2015), 2015, 243–246

[9] J. Baltazar, D. Rijpkema, J.A.C. Falcão de Campos, “On the use of the $\gamma - {\mathop{\rm Re}\nolimits_\theta}$ transition model for the prediction of the propeller performance at model-scale”, Proceedings of the Fifth International Symposium on Marine Propulsors (Espoo, Finland, 12-15 June 2017), ed. Antonio Sánchez-Caja, VTT Technical Research Center of Finland Ltd, 2017, MB2.1

[10] C.G. Grlj, N. Degiuli, A. Farkas, I. Martić, “Numerical study of scale effects on open water propeller performance”, J. Mar. Sci. Eng., 10:8 (2022), 10081132 | DOI

[11] X.-Q. Dong, W. Li, C.-J. Yang, F. Noblesse, “RANSE-based simulation and analysis of scale effects on open-water performance of the PPTC-II benchmark propeller”, J. Ocean Eng. Sci., 3:3 (2018), 186–204 | DOI

[12] A. Kozelkov, V. Kurulin, A. Kurkin, A. Taranov, K. Plygunova, O. Krutyakova, A. Korotkov, “Numerical approach based on solving 3D Navier-Stokes equations for simulation of the marine propeller flow problems”, Fluids, 8:11 (2023), 293 | DOI

[13] F.R. Menter, M. Kuntz, R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model”, Turbulence, heat and mass transfer, Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, v. 4, Begell House Inc., West Redding, 2003, 625–632

[14] F.R. Menter, R.B. Langtry, S.R. Likki, Y.B. Suzen, P.G. Huang, S.A. Volker, “Correlation-based transition model using local variables—Part 1: Model formulation”, J. Turbomach., 128:3 (2006), 413–422 | DOI

[15] C.W. Hirt, B.D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Comput. Phys., 39 (1981), 201–225 | DOI | Zbl

[16] A. Korotkov, A. Kozelkov, “Three-dimensional numerical simulations of fluid dynamics problems on grids with nonconforming interfaces”, Sib. Èlectron Mat. Izv., 19:2 (2022), 1038–1053 | MR

[17] A. Kozelkov, A. Kurkin, V. Kurulin, K. Plygunova, O. Krutyakova, “Validation of the LOGOS software package methods for the numerical simulation of cavitational flows”, Fluids, 8 (2023), 104 | DOI

[18] A.V. Sarazov, A.S. Kozelkov, D.Yu. Strelets, R.N. Zhuchkov, “Modeling object motion on arbitrary unstructured grids using an invariant principle of computational domain topology: Key features”, J. Symmetry, 15:11 (2023), 2081 | DOI

[19] A.S. Kozelkov, N.G. Galanov, I.V. Semenov, R.N. Zhuchkov, D.Yu. Strelets, “Computational investigation of the water droplet effects on shapes of ice on airfoils”, J. Aerospace, 10:10 (2023), 906 | DOI

[20] J.H. Ferziger, M. Perić, Computational methods for fluid dynamics, Springer, Berlin, 2002 | MR | Zbl

[21] C. Fletcher, Computational techniques for fluid dynamics, in two books, Mir, M., 1991 | MR | Zbl

[22] K.N. Volkov, V.N. Emelyanov, Large eddy simulations in calculations of turbulent flows, Fizmatlit, M., 2008

[23] P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.Kh. Strelets, A. Travin, “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theor. Comput. Fluid Dyn., 20:3 (2006), 181–195 | DOI | Zbl

[24] E. Yari, H. Ghassemi, “Numerical study of surface tension effect on the hydrodynamic modeling of the partially submerged propeller's blade section”, J. Mechanics, 32:5 (2016), 653–664 | DOI

[25] C. Yvin, P. Muller, K. Koushan, “Numerical study of propeller ventilation”, Proceedings of the Fifth International Symposium on Marine Propulsors (Espoo, Finland, 12-15 June, 2017), 2017

[26] L.G. Loitsyanskii, Fluid and gas mechanics, GITTL, M., 1950 ; Pergamon Press, 1972 | MR | Zbl

[27] A.S. Kozelkov, V.V. Kurulin, S.V. Lashkin, R.M. Shagaliev, A.V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications”, Comput. Math. Math. Phys., 56:8 (2016), 1506–1516 | DOI | MR | Zbl

[28] A Workshop on CFD in Ship Hydrodynamics (National Maritime Research Institute (NMRI), Tokyo), 2015 http://www.t2015.nmri.go.jp

[29] A. Taranov, “Determination of local and integral parameters for container cargo carrier in digital basin”, Transactions of the Krylov State Research Centre, 389:3 (2019), 73–82 | DOI

[30] 1978 ITTC - Recommended Procedures and Guidelines: ITTC Performance Prediction Method, Revision 04, 2017 https://www.ittc.info/media/8017/75-02-03-014.pdf