Modification of the IDW method for numerical simulation of aerodynamics problems on large grids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 591-620 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Работа посвящена вопросам численного моделирования задач обтекания подвижных тел. В качестве базового подхода для расчёта выбран численный метод, основанный на методе конечных объёмов. Приводятся уравнения Навье-Стокса, описывающие течение вязкого сжимаемого газа, и схемы дискретизации. Движение границ, как правило, влечёт за собой изменение контрольных объёмов, поэтому возникает необходимость в использовании методов изменения расчётной сетки. В работе детально рассматривается IDW метод деформирования расчётных сеток. Вычислительная сложность базового метода эквивалента оценке $O\left( n_i n_b\right)$ ($n_i$ и $n_b$ – количество внутренних вершин и вершин на поверхности), что вызывает трудности использования в промышленно ориентированных задачах. Ключевым элементом ускорения процедуры изменения расчётной сетки является применение метода быстрых мультиполей. Иерархические структуры данных совместно с методами теории графов позволили снизить сложность алгоритма до $O\left(n_i log(n_b)\right)$ и обеспечить качественное деформирование расчётной сетки. Дополнительно предложен метод распределения вычислительной нагрузки, что вкупе повысило скорость работы алгоритма до 80{%} на характерных задачах авиационной промышленности.
Keywords: numerical simulation, Navier-Stokes equations, IDW, LOGOS software package.
@article{SEMR_2024_21_2_a46,
     author = {A. S. Sarazov and A. S. Kozelkov},
     title = {Modification of the {IDW} method for numerical simulation of aerodynamics problems on large grids},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {591--620},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a46/}
}
TY  - JOUR
AU  - A. S. Sarazov
AU  - A. S. Kozelkov
TI  - Modification of the IDW method for numerical simulation of aerodynamics problems on large grids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 591
EP  - 620
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a46/
LA  - ru
ID  - SEMR_2024_21_2_a46
ER  - 
%0 Journal Article
%A A. S. Sarazov
%A A. S. Kozelkov
%T Modification of the IDW method for numerical simulation of aerodynamics problems on large grids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 591-620
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a46/
%G ru
%F SEMR_2024_21_2_a46
A. S. Sarazov; A. S. Kozelkov. Modification of the IDW method for numerical simulation of aerodynamics problems on large grids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 591-620. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a46/

[1] E.C. Yates, Jr., AGARD standart aeroelastic configurations for dynamic response I-Wing 445.6, AGARD Report No 765/ 23665-5225, Interdisciplinary Research Office NASA Langley Research Center Hampton (USA), 1988, 83 pp.

[2] L. Reimer, A. Boucke, J. Ballmann, M. Behr, International Forum on Aeroelasticity and Structural Dynamics, IFASD-2009-130 (Seattle, WA, June 21-25, 2009)

[3] P.A. Cavallo, A. Hosangadi, R.A. Lee, S.M. Dash, “Dynamic unstructured grid methodology with application to aero/propulsive flowfields”, 15th Applied Aerodynamics Conference (Atlanta, Georgia), 1997, AIAA 1997–2310

[4] J.T. Batina, “Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aerodynamic analysis”, AIAA J., 29 (1991), 327–333 | DOI

[5] C. Farhat, C. Degand, B. Koobus, M. Lesoinne, “Torsional springs for two-dimensional dynamic unstructed fluid meshes”, Comput. Methods Appl. Mech. Eng., 163:1-4 (1998), 231–245 | DOI

[6] B. Helenbrook, “Mesh deformation using the biharmonic operator”, Int. J. Numer. Methods Eng., 56:7 (2003), 1007–1021 | DOI | Zbl

[7] M.D. Buhmann, Radial basis functions: Theory and implementations, Cambridge University Press, Cambridge, 2003 | MR | Zbl

[8] J.A. Witteveen, H. Bijl, “Explicit mesh deformation using inverse distance weighting interpolation”, Proceedings of the 19th AIAA Computational Fluid Dynamics Conference, 19th AIAA Computational Fluid Dynamics Conference (San Antonio, Texas), ed. BL. Drolen, AIAA, 2009, AIAA Paper 2009–3996

[9] E. Luke, E. Collins, E. Blades, “A fast mesh deformation method using explicit interpolation”, J. Comput. Phys., 231:2 (2012), 586–601 | DOI | MR | Zbl

[10] O.N. Borisenko, M.V. Kuz'menko, M.V. Cherenkova, A.G. Giniyatullina, N.V. Chukhmanov, D.N. Smolkina, T.E. Timaeva, K.A. Blazhnova, “Uluchshenie kachestva granej ob"emnykh yacheek pri generacii nestrukturirovannykh setok v pakete programm Logos”, Voprosy Atomnoj Nauki i Tekhniki. Seriya: Matematicheskoe modelirovanie fizicheskikh processov, 2022:3 (2022), 73–85 | MR

[11] L. Greengard, V. Rokhlin, “A fast algorithm for particle simulations”, J. Comput. Phys., 73 (1987), 325–348 | DOI | MR | Zbl

[12] S.A. Sivak, M.E. Royak, I.M. Stupakov, “Application of the fast multipole method to optimization of the boundary element method of solving the Helmholtz equation”, J. Appl. Ind. Math., 15:3 (2021), 490–503 | DOI | MR | Zbl

[13] C.A.J. Fletcher, Computational Techniques for Fluid Dynamics, Second Ed., Springer, Berlin etc., 1991 | MR | Zbl

[14] L.G. Loitsyanskii, Mechanics of liquids and gases, Pergamon Press, Oxford etc, 1972 | MR | Zbl

[15] P.R. Spalart, S.R. Allmaras, “A one-equation turbulence model for aerodynamic flows”, AIAA 30th Aerospace Sciences Meeting and Exhibit, 1992, 0439

[16] R. Menter, M. Kuntz, R. Langtry, “Ten years of industrial experience with SST turbulence model”, Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, Begell House Inc., West Redding, 2003, 625–632

[17] A. Travin, M. Shur, M. Strelets, P.R. Spalart, “Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows”, Fluid Mech. Appl., 65 (2002), 239–254 | Zbl

[18] A.S. Kozelkov, O.L. Krutyakova, V.V. Kurulin, S.V. Lashkin, E.S. Tyatyushkina, “Application of numerical schemes with singling out the boundary layer for the computation of turbulent flows using eddy-resolving approaches on unstructured grids”, Comput. Math. Math. Phys., 57:6 (2017), 1036–1047 | DOI | MR | Zbl

[19] A.V. Sarazov, “Osobennosti vychisleniya konvektivnykh potokov dlya zadach aehrodinamiki pri ispol'zovanii setok s podvizhnymi uzlami”, Voprosy Atomnoj Nauki i Tekhniki. Seriya: Matematicheskoe modelirovanie fizicheskikh processov, 2023:3 (2023), 55–66

[20] P.D. Thomas, C.K. Lombard, “Geometric conservation law and its application to flow computations on moving grids”, AIAA J., 17:10 (1979), 1030–1037 | DOI | MR | Zbl

[21] J. Blazek, Computational fluid dynamics: principles and applications, Elsevier, Amsterdam, 2001 | MR | Zbl

[22] P.L. Roe, “Characteristic-based schemes for the Euler equations”, Annu. Rev. Fluid Mech., 18 (1986), 337–365 | DOI | MR | Zbl

[23] J.M. Weiss, W.A. Simth, “Preconditioning applied to variable and const density flows”, AIAA J., 33:11 (1995), 2050–2057 | DOI

[24] J. Barnes, P. Hut, “A hierarchical O(NlogN) force-calculation algorithm”, Nature, 324:4 (1986), 446–449 | DOI

[25] B. Hendrickson, R. Leland, The Chaco user's guide: Version 2.0, Tech. Rep. SAND95–2344, Albuquerque, 1995

[26] A. Korotkov, A. Kozelkov, “Three-dimensional numerical simulations of fluid dynamics problems on grids with nonconforming interfaces”, Sib. Èlectron. Mat. Izv., 19:2 (2022), 1038–1053 | MR

[27] Kozelkov A.S., Krutyakova O.L., Kurulin V.V., Strelets D.Yu., Shishlenin M.A., “The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1238–1250 | DOI | MR | Zbl

[28] A.V. Struchkov, A.S. Kozelkov, K. Volkov, A.A. Kurkin, R.N. Zhuchkov, A.V. Sarazov, “Numerical simulation of aerodynamic problems based on adaptive mesh refinement method”, Acta Astronautica, 172 (2020), 7–15 | DOI

[29] B. Stanford, K. Jacobson, P. Chwalowski, Ongoing aeroelastic prediction and validation activities, AIAA 2022-1557, NASA Langley Research Center, 2022

[30] K.K. Gupta, “Development of a finite element aeroelastic analysis capability”, J. Aircraft, 33:5 (1996)

[31] P. Pahlavanloo, Dynamic aeroelastic simulation of the AGARD 445.6 wing using Edge, Tech. Rep. FOI, FOI-R-2259-SE, Defence Research Agency, Stockholm, April 2007