Acceleration of CFD simulation preparation by surface mesh simplification in LOGOS software package
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 570-590 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article describes a new surface triangular mesh simplification algorithm. The simplification algorithm is applied as one of preparation stages of a high-quality surface mesh generation, which is a base for computational mesh generation in LOGOS software package. Simplification of the initial model represented as a set of triangular cells makes it possible to speed up the preparation of the final surface mesh without its quality degradation and, consequently, it leads eventually to faster computation mesh generation and simulation of physical processes. Simplification algorithm executes maximum allowable cells reduction to speed up the next stages of mesh generation. Introduced constraints enable the control over the surface curvature changes with the account for the user-set sizes, the deviation from the initial model, modified cells quality, etc. A new approach is proposed to simplify surface meshes in the context of computation model generation for CFD simulations with a possibility of parallel running using OpenMP means on given boundaries with preliminary simplification of sets of curves separating them.
Keywords: LOGOS software package, preprocessor, surface triangular mesh generator, mesh simplification, curvature, quality of cells, feature curves.
@article{SEMR_2024_21_2_a45,
     author = {E. O. Evstifeeva},
     title = {Acceleration of {CFD} simulation preparation by surface mesh simplification in {LOGOS} software package},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {570--590},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a45/}
}
TY  - JOUR
AU  - E. O. Evstifeeva
TI  - Acceleration of CFD simulation preparation by surface mesh simplification in LOGOS software package
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 570
EP  - 590
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a45/
LA  - ru
ID  - SEMR_2024_21_2_a45
ER  - 
%0 Journal Article
%A E. O. Evstifeeva
%T Acceleration of CFD simulation preparation by surface mesh simplification in LOGOS software package
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 570-590
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a45/
%G ru
%F SEMR_2024_21_2_a45
E. O. Evstifeeva. Acceleration of CFD simulation preparation by surface mesh simplification in LOGOS software package. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 570-590. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a45/

[1] M.A. Pogosyan, E.P. Savel'evskih, R.M. Shagaliev, A.S. Kozelkov, D.Yu. Strelec, A.A. Ryabov, A.V. Kornev, Yu.N. Deryugin, V.F. Spiridonov, K.V. Ciberev, “Primenenie otechestvennyh superkomp'yuternyh tekhnologij dlya sozdaniya perspektivnyh obrazcov aviacionnoj tekhniki”, Voprosy atomnoj nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskih processov, 2013:2 (2013), 3–18

[2] ANSYS, http://www.ansys.com

[3] STAR-CCM+ Siemens PLM Software, https://mdx.plm.automation.siemence.com/star-ccm-plus

[4] Comsol Multiphysics, https://www.comsol.ru

[5] HyperMesh, https://www.altairhyperworks.com/hypermesh

[6] Netgen Mesh Generator, http://sourceforge.net/projects/netgen-mesher

[7] CGAL, http://www.cgal.org/download.html

[8] Advanced Numerical Instruments 3D, http://sourceforge.net/projects/ani3d

[9] A.S. Kozelkov, O.L. Krutyakova, V.V. Kurulin, D.Yu. Strelets, M.A. Shishlenin, “The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations”, Sib. Èlectron Mat. Izv., 18:2 (2021), 1238–1250 | DOI | MR | Zbl

[10] A.S. Kozelkov, A.V. Struchkov, D.Yu. Strelets, “Two methods to improve the efficiency of supersonic flow simulation on unstructured grids”, Fluids, 7:4 (2022), 136 | DOI

[11] D.N. Smolkina, O.N. Borisenko, M.V. Cherenkova, A.G. Giniyatullina, M.V. Kuz'menko, N.V CHuhmanov, E.V. Potekhina, N.V. Popova, M.R. Turusov, “Avtomaticheskij generator nestrukturirovannyh mnogogrannyh setok v preprocessore paketa programm LOGOS”, Voprosy atomnoj nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskih processov, 2018:2 (2018), 25–39

[12] N.V. Popova, O.N. Borisenko, I.I. Korneeva, N.V. Chuhmanov, E.V. Potekhina, V.V. Lazarev, A.G. Giniyatullina, “Avtomaticheskij generator nestrukturirovannyh tetraedral'nyh setok s prizmaticheskimi sloyami v preprocessore paketa programm «LOGOS»”, Voprosy atomnoj nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskih processov, 2020:1 (2020), 43–57

[13] N.V. Popova, “Avtomaticheskij generator nestrukturirovannyh mnogogrannyh setok na osnove tetraedral'nyh setok s prizmaticheskimi sloyami”, Voprosy atomnoj nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskih processov, 2021:3 (2021), 70–83

[14] A.N. Lukichev, T.V. Calko, D.M. Pankratov, D.V. Loginov, A.I. Belova, E.O. Mos'kina, “Osobennosti postroeniya triangulyacionnyh setok na poverhnostyah v analiticheskom i fasetochnom predstavlenii”, Sbornik dokladov 15oj nauchno-tekhnicheskoj konferencii «Molodezh' v nauke», FGUP «RFYAC-VNIIEF», Sarov, 2017, 73–78

[15] O.N. Borisenko, A.N. Lukichev, E.O. Evstifeeva, D.M. Pankratov, T.V. Calko, A.G. Giniyatullina, “Algoritmy obrabotki osobennostej geometricheskih modelej pri postroenii poverhnostnyh treugol'nyh setok v preprocessore paketa programm LOGOS”, Voprosy atomnoj nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskih processov, 2020:3 (2020), 40–52

[16] P.-L. George, H. Borouchaki, Delaunay triangulation and meshing, Hermès, Paris, 1998 | MR | Zbl

[17] R. Potamias, S. Ploumpis, S. Zafeiriou, “Neural mesh simplification”, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (New Orleans, LA, USA), 2022, 18562–18571

[18] Z. Liu, C. Zhang, H. Cai, W. Qv, S. Zhang, “A model simplification algorithm for 3D reconstruction”, Remote Sens., 14:17 (2022), 4216 | DOI

[19] Y. Song, R. Fellegara, F. Iuricich, L. De Floriani, “Efficient topology-aware simplification of large triangulated terrains”, Proceedings of the 29th International Conference on Advances in Geographic Information Systems, 2021, 576–587

[20] P. Cignoni, C. Montani, R. Scopigno, “A comparison of mesh simplification algorithms”, IEEE Comput. Graphics Appl., 22:1 (1998), 37–54 | DOI

[21] A.D. Kalvin, R.H. Taylor, “Superfaces: Poligonal mesh simplification with bounded error”, IEEE Comput. Graphics Appl., 16:3 (1996), 64–77 | DOI

[22] B. Hamann, “A data reduction scheme for triangulated surfaces”, Comput. Aided Geom. Des., 11:2 (1994), 197–214 | DOI | MR | Zbl

[23] P. Lindstrom, G. Turk, “Fast and memory efficient polygonal simplification”, Proc. Visualization '98, IEEE Computer Soc. Press, 1998, 279–286 (Cat. 98CB36276) | DOI

[24] Hongle Li, SeongKi Kim, “Triangular mesh simplification based on surface angle”, Conference Paper, MITA, 2019, 143–146

[25] G. Zhou, S. Yuan, S. Luo, “Mesh simplification algorithm based on the quadratic error metric and triangle collapse”, IEEE Access, 8 (2020), 196341–196350 | DOI

[26] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, “Mesh optimization”, ACM Computer Graphics Proc., Siggraph '93, Annual Conference Series, 1993, 19–26 | DOI

[27] Yongzhi Wang, Jianwen Zheng, Hui Wang, Fast mesh simplification method for three-dimensional geometric models with feature preserving efficiency, Scientific Programming, Hindawi, 2019

[28] M. Garland, P.S. Heckbert, “Surface simplification using quadric error metrics”, Comp. Graph. Proc. Annual Conf. Series, Siggraph '97, ACM Press, 1997, 209–216

[29] K. Bahirat, C. Lai, R.P. Mcmahan, B. Prabhakaran, “Designing and evaluating a mesh simplification algorithm for virtual reality”, ACM Trans. Multimedia Comput. Commun. Appl., 14:3s (2018), 63

[30] Lin Zhang, Zhen Ma, Zhong Zhou, Wei Wu, “Laplacian-Based Feature Preserving Mesh Simplification”, Advances in Multimedia Information Processing - PCM 2012, Lecture Notes in Computer Science, 7674, eds. Lin W., et al., Springer, Berlin–Heidelberg, 378–389 | MR

[31] Li Yao, Shihui Huang, Hui Xu, Peilin Li, “Quadratic error metric mesh simplification algorithm based on discrete curvature”, Math. Probl. Eng., 2015, 428917 | MR | Zbl

[32] P. Trettner, L. Kobbelt, “Fast and robust QEF minimization using probabilistic quadrics”, Computer Graphics Forum, 39:2 (2020), 325–334 | DOI

[33] T. He, L. Hong, A. Varshney, S.W. Wang, “Controlled topology simplification”, IEEE Trans. On Visualization Computer Graphics, 2:2 (1996), 171–184 | DOI

[34] M. Eck, T. De Rose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle, SIGGRAPH 1995: 22nd Annual Conference on Computer Graphics and Interactive Techniques, ACM Press, 1995, Multiresolution analysis of arbitrary meshes

[35] V. Surazhsky, C. Gotsman, A qualitative comparison of some mesh simplification software packages, CMA/IFI, University of Oslo, 2005

[36] A.I. Belova, A.N. Lukichev, O.N. Borisenko, “Vychislenie krivizny diskretnyh poverhnostej v generatore poverhnostnyh triangulyacionnyh setok Logos”, Prepost, Sbornik dokladov 15oj nauchno-tekhnicheskoj konferencii «Molodezh' v nauke», FGUP «RFYAC-VNIIEF», Sarov, 2017, 34–40

[37] 3rd AIAA CFD Drag Prediction Workshop, June, San Francisco, 2006 http://aiaa-dpw.larc.nasa.gov/Workshop3/workshop3.html

[38] P. Cignoni, C. Rocchini, R. Scopigno, Metro: Measuring error on simplified surfaces, Technical Report, Centre National de la Recherche Scientifique, FRA, 1996