@article{SEMR_2024_21_2_a45,
author = {E. O. Evstifeeva},
title = {Acceleration of {CFD} simulation preparation by surface mesh simplification in {LOGOS} software package},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {570--590},
year = {2024},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a45/}
}
TY - JOUR AU - E. O. Evstifeeva TI - Acceleration of CFD simulation preparation by surface mesh simplification in LOGOS software package JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 570 EP - 590 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a45/ LA - ru ID - SEMR_2024_21_2_a45 ER -
%0 Journal Article %A E. O. Evstifeeva %T Acceleration of CFD simulation preparation by surface mesh simplification in LOGOS software package %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 570-590 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a45/ %G ru %F SEMR_2024_21_2_a45
E. O. Evstifeeva. Acceleration of CFD simulation preparation by surface mesh simplification in LOGOS software package. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 570-590. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a45/
[1] M.A. Pogosyan, E.P. Savel'evskih, R.M. Shagaliev, A.S. Kozelkov, D.Yu. Strelec, A.A. Ryabov, A.V. Kornev, Yu.N. Deryugin, V.F. Spiridonov, K.V. Ciberev, “Primenenie otechestvennyh superkomp'yuternyh tekhnologij dlya sozdaniya perspektivnyh obrazcov aviacionnoj tekhniki”, Voprosy atomnoj nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskih processov, 2013:2 (2013), 3–18
[2] ANSYS, http://www.ansys.com
[3] STAR-CCM+ Siemens PLM Software, https://mdx.plm.automation.siemence.com/star-ccm-plus
[4] Comsol Multiphysics, https://www.comsol.ru
[5] HyperMesh, https://www.altairhyperworks.com/hypermesh
[6] Netgen Mesh Generator, http://sourceforge.net/projects/netgen-mesher
[7] CGAL, http://www.cgal.org/download.html
[8] Advanced Numerical Instruments 3D, http://sourceforge.net/projects/ani3d
[9] A.S. Kozelkov, O.L. Krutyakova, V.V. Kurulin, D.Yu. Strelets, M.A. Shishlenin, “The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations”, Sib. Èlectron Mat. Izv., 18:2 (2021), 1238–1250 | DOI | MR | Zbl
[10] A.S. Kozelkov, A.V. Struchkov, D.Yu. Strelets, “Two methods to improve the efficiency of supersonic flow simulation on unstructured grids”, Fluids, 7:4 (2022), 136 | DOI
[11] D.N. Smolkina, O.N. Borisenko, M.V. Cherenkova, A.G. Giniyatullina, M.V. Kuz'menko, N.V CHuhmanov, E.V. Potekhina, N.V. Popova, M.R. Turusov, “Avtomaticheskij generator nestrukturirovannyh mnogogrannyh setok v preprocessore paketa programm LOGOS”, Voprosy atomnoj nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskih processov, 2018:2 (2018), 25–39
[12] N.V. Popova, O.N. Borisenko, I.I. Korneeva, N.V. Chuhmanov, E.V. Potekhina, V.V. Lazarev, A.G. Giniyatullina, “Avtomaticheskij generator nestrukturirovannyh tetraedral'nyh setok s prizmaticheskimi sloyami v preprocessore paketa programm «LOGOS»”, Voprosy atomnoj nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskih processov, 2020:1 (2020), 43–57
[13] N.V. Popova, “Avtomaticheskij generator nestrukturirovannyh mnogogrannyh setok na osnove tetraedral'nyh setok s prizmaticheskimi sloyami”, Voprosy atomnoj nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskih processov, 2021:3 (2021), 70–83
[14] A.N. Lukichev, T.V. Calko, D.M. Pankratov, D.V. Loginov, A.I. Belova, E.O. Mos'kina, “Osobennosti postroeniya triangulyacionnyh setok na poverhnostyah v analiticheskom i fasetochnom predstavlenii”, Sbornik dokladov 15oj nauchno-tekhnicheskoj konferencii «Molodezh' v nauke», FGUP «RFYAC-VNIIEF», Sarov, 2017, 73–78
[15] O.N. Borisenko, A.N. Lukichev, E.O. Evstifeeva, D.M. Pankratov, T.V. Calko, A.G. Giniyatullina, “Algoritmy obrabotki osobennostej geometricheskih modelej pri postroenii poverhnostnyh treugol'nyh setok v preprocessore paketa programm LOGOS”, Voprosy atomnoj nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskih processov, 2020:3 (2020), 40–52
[16] P.-L. George, H. Borouchaki, Delaunay triangulation and meshing, Hermès, Paris, 1998 | MR | Zbl
[17] R. Potamias, S. Ploumpis, S. Zafeiriou, “Neural mesh simplification”, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (New Orleans, LA, USA), 2022, 18562–18571
[18] Z. Liu, C. Zhang, H. Cai, W. Qv, S. Zhang, “A model simplification algorithm for 3D reconstruction”, Remote Sens., 14:17 (2022), 4216 | DOI
[19] Y. Song, R. Fellegara, F. Iuricich, L. De Floriani, “Efficient topology-aware simplification of large triangulated terrains”, Proceedings of the 29th International Conference on Advances in Geographic Information Systems, 2021, 576–587
[20] P. Cignoni, C. Montani, R. Scopigno, “A comparison of mesh simplification algorithms”, IEEE Comput. Graphics Appl., 22:1 (1998), 37–54 | DOI
[21] A.D. Kalvin, R.H. Taylor, “Superfaces: Poligonal mesh simplification with bounded error”, IEEE Comput. Graphics Appl., 16:3 (1996), 64–77 | DOI
[22] B. Hamann, “A data reduction scheme for triangulated surfaces”, Comput. Aided Geom. Des., 11:2 (1994), 197–214 | DOI | MR | Zbl
[23] P. Lindstrom, G. Turk, “Fast and memory efficient polygonal simplification”, Proc. Visualization '98, IEEE Computer Soc. Press, 1998, 279–286 (Cat. 98CB36276) | DOI
[24] Hongle Li, SeongKi Kim, “Triangular mesh simplification based on surface angle”, Conference Paper, MITA, 2019, 143–146
[25] G. Zhou, S. Yuan, S. Luo, “Mesh simplification algorithm based on the quadratic error metric and triangle collapse”, IEEE Access, 8 (2020), 196341–196350 | DOI
[26] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, “Mesh optimization”, ACM Computer Graphics Proc., Siggraph '93, Annual Conference Series, 1993, 19–26 | DOI
[27] Yongzhi Wang, Jianwen Zheng, Hui Wang, Fast mesh simplification method for three-dimensional geometric models with feature preserving efficiency, Scientific Programming, Hindawi, 2019
[28] M. Garland, P.S. Heckbert, “Surface simplification using quadric error metrics”, Comp. Graph. Proc. Annual Conf. Series, Siggraph '97, ACM Press, 1997, 209–216
[29] K. Bahirat, C. Lai, R.P. Mcmahan, B. Prabhakaran, “Designing and evaluating a mesh simplification algorithm for virtual reality”, ACM Trans. Multimedia Comput. Commun. Appl., 14:3s (2018), 63
[30] Lin Zhang, Zhen Ma, Zhong Zhou, Wei Wu, “Laplacian-Based Feature Preserving Mesh Simplification”, Advances in Multimedia Information Processing - PCM 2012, Lecture Notes in Computer Science, 7674, eds. Lin W., et al., Springer, Berlin–Heidelberg, 378–389 | MR
[31] Li Yao, Shihui Huang, Hui Xu, Peilin Li, “Quadratic error metric mesh simplification algorithm based on discrete curvature”, Math. Probl. Eng., 2015, 428917 | MR | Zbl
[32] P. Trettner, L. Kobbelt, “Fast and robust QEF minimization using probabilistic quadrics”, Computer Graphics Forum, 39:2 (2020), 325–334 | DOI
[33] T. He, L. Hong, A. Varshney, S.W. Wang, “Controlled topology simplification”, IEEE Trans. On Visualization Computer Graphics, 2:2 (1996), 171–184 | DOI
[34] M. Eck, T. De Rose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle, SIGGRAPH 1995: 22nd Annual Conference on Computer Graphics and Interactive Techniques, ACM Press, 1995, Multiresolution analysis of arbitrary meshes
[35] V. Surazhsky, C. Gotsman, A qualitative comparison of some mesh simplification software packages, CMA/IFI, University of Oslo, 2005
[36] A.I. Belova, A.N. Lukichev, O.N. Borisenko, “Vychislenie krivizny diskretnyh poverhnostej v generatore poverhnostnyh triangulyacionnyh setok Logos”, Prepost, Sbornik dokladov 15oj nauchno-tekhnicheskoj konferencii «Molodezh' v nauke», FGUP «RFYAC-VNIIEF», Sarov, 2017, 34–40
[37] 3rd AIAA CFD Drag Prediction Workshop, June, San Francisco, 2006 http://aiaa-dpw.larc.nasa.gov/Workshop3/workshop3.html
[38] P. Cignoni, C. Rocchini, R. Scopigno, Metro: Measuring error on simplified surfaces, Technical Report, Centre National de la Recherche Scientifique, FRA, 1996