Impact of the dislocation density on the transient photoluminescence intensity in GaN semiconductor
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 555-569 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The time-resolved photoluminescence in a layer of GaN with an embedded array of threading dislocations is studied. An instantaneous spatially uniform source of excitons is considered. The transport and recombination of excitons is governed by a 3D transient drift-diffusion-recombination equation with mixed Dirichlet and Robin boundary conditions on the plane surface and the cylindrical boundaries of the dislocations. We develop a stochastic simulation algorithm which solves this problem by tracking exciton trajectories. The drift of the excitions is affected by the piezoelectric fields around the dislocations. The parameters of the piezoelectric field, the exciton's diffusion length and its mean life time are taken from the experimental study published recently in our triple article in Physical Review Applied of 2022. The main finding in the present paper concerns the relation between the photoluminescence intensity and the dislocation density. It is shown that from a transient photoluminescence curve it is possible to extract the dislocation density with high resolution.
Keywords: threading dislocations, piezoelectric field, radiative recombination, exciton's lifetime, random walk on spheres, transient drift-diffusion-recombination equation.
Mots-clés : photoluminescence
@article{SEMR_2024_21_2_a44,
     author = {K. K. Sabelfeld and A. E. Kireeva},
     title = {Impact of the dislocation density on the transient photoluminescence intensity in {GaN} semiconductor},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {555--569},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a44/}
}
TY  - JOUR
AU  - K. K. Sabelfeld
AU  - A. E. Kireeva
TI  - Impact of the dislocation density on the transient photoluminescence intensity in GaN semiconductor
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 555
EP  - 569
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a44/
LA  - en
ID  - SEMR_2024_21_2_a44
ER  - 
%0 Journal Article
%A K. K. Sabelfeld
%A A. E. Kireeva
%T Impact of the dislocation density on the transient photoluminescence intensity in GaN semiconductor
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 555-569
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a44/
%G en
%F SEMR_2024_21_2_a44
K. K. Sabelfeld; A. E. Kireeva. Impact of the dislocation density on the transient photoluminescence intensity in GaN semiconductor. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 555-569. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a44/

[1] R.K. Ahrenkiel, “Chapter 2 Minority-Carrier Lifetime in III-V Semiconductors”, Semiconductors and Semimetals, 39, eds. Richard K. Ahrenkiel, Mark S. Lundstrom, Academic Press, Boston, 1993

[2] O. Brandt, V.M. Kaganer, J. Lähnemann, T. Flissikowski, C. Pfüller, K.K. Sabelfeld, A.E. Kireeva, C. Cheze, R. Calarco, H. Grahn, U. Jahn, “Carrier diffusion in Ga N: A cathodoluminescence study. II: Ambipolar versus exciton diffusion”, Phys. Rev. Applied, 17 (2022), 024018 | DOI

[3] L. Devroye, Non-uniform random variate generation, Springer, New York etc., 1986 | MR | Zbl

[4] U. Jahn, V.M. Kaganer, K.K. Sabelfeld, A.E. Kireeva, J. Lähnemann, C. Pfüller, T. Flissikowski, C. Cheze, K. Biermann, R. Calarco, O. Brandt, “Carrier diffusion in Ga N: A cathodoluminescence study. I. Temperature-dependent generation volume”, Phys. Rev. Applied, 17 (2022), 024017 | DOI

[5] V.M. Kaganer, J. Lähnemann, C. Pfüller, K.K. Sabelfeld, A.E. Kireeva, O. Brandt, “Determination of the carrier diffusion length in GaN from cathodoluminescence maps around threading dislocations: Fallacies and opportunities”, Phys. Rev. Appl., 12:5 (2019), 054038 | DOI

[6] V. Kaganer, K. Sabelfeld, O. Brandt, “Piezoelectric field, exciton lifetime, and cathodoluminescence intensity at threading dislocations in GaN{0001}”, Appl. Phys. Lett., 112:12 (2018), 122101 | DOI

[7] J. Lähnemann, V.M. Kaganer, K.K. Sabelfeld, A.E. Kireeva, U. Jahn, C. Cheze, R. Calarco, O. Brandt, “Carrier diffusion in GaN: A cathodoluminescence study. III: Nature of nonradiative recombination at threading dislocations”, Phys Rev. Appl., 17:2, 024019

[8] W. Liu, J.-F. Carlin, N. Grandjean, B. Deveaud, G. Jacopin, “Exciton dynamics at a single dislocation in GaN probed by picosecond time-resolved cathodoluminescence”, Appl. Phys. Lett., 109:4 (2016), 042101 | DOI

[9] A.D. Polyanin, Handbook of linear partial differential equations for engineers and scientists, Charman Hall/CRC, Boca Raton, 2002 | MR | Zbl

[10] K.K. Sabelfeld, “Random walk on spheres algorithm for solving drift-diffusion-problems”, Monte Carlo Methods Appl., 22:4 (2016), 265–275 | DOI | MR | Zbl

[11] K.K. Sabelfeld, “Random walk on spheres algorithm for solving transient drift-diffusion-reaction problems”, Monte Carlo Methods Appl., 23:3 (2017), 189–212 | DOI | MR | Zbl

[12] K. Sabelfeld, A. Kireeva, “Probability distribution of the life time of a drift-diffusion-reaction process inside a sphere with applications to transient cathodoluminescence imaging”, Monte Carlo Methods Appl., 24:2 (2018), 79–92 | DOI | MR | Zbl

[13] The Siberian Branch of the Russian Academy of Sciences Siberian Supercomputer Center, http://www.sscc.icmmg.nsc.ru