@article{SEMR_2024_21_2_a43,
author = {T. S. Popova},
title = {The problem on {T-shape} junction of thin inclusions},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1578--1593},
year = {2024},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a43/}
}
T. S. Popova. The problem on T-shape junction of thin inclusions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1578-1593. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a43/
[1] A.M. Khludnev, “Thin rigid inclusions with delaminations in elastic plates”, Eur. J. Mech., A, Solids, 32 (2012), 69–75 | DOI | Zbl
[2] T. Popova, G.A. Rogerson, “On the problem of a thin rigid inclusion embedded in a Maxwell material”, Z. Angew. Math. Phys., 67:4 (2016), 105 | DOI | Zbl
[3] E. M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a thin delaminated rigid inclusion”, Journal of Applied and Industrial Mathematics, 10:2 (2016), 264–276 | DOI | Zbl
[4] A.M. Khludnev, G. Leugering, “On elastic bodies with thin rigid inclusions and cracks”, Math. Methods Appl. Sci., 33:16 (2010), 1955–1967 | DOI | Zbl
[5] N.P. Lazarev, T.S. Popova, G.A. Rogerson, “Optimal control of the radius of a rigid circular inclusion in inhomogeneous two-dimensional bodies with cracks”, Z. Angew. Math. Phys., 69:3 (2018), 53 | DOI | Zbl
[6] H. Itou, A.M. Khludnev, “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Meth. Appl. Sci., 39:17 (2016), 4980–4993 | DOI | Zbl
[7] A.M. Khludnev, G.R. Leugering, “On Timoshenko thin elastic inclusions inside elastic bodies”, Math. Mech. Solids, 20:5 (2015), 495–511 | DOI | Zbl
[8] V.V. Shcherbakov, “The Griffith formula and $J$-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | Zbl
[9] A.M. Khludnev, T.S. Popova, “Timoshenko inclusions in elastic bodies crossing an external boundary at zero angle”, Acta Mech. Solida Sin., 30:3 (2017), 327–333 | DOI
[10] A.M. Khludnev, L. Faella, T.S. Popova, “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Mathematics and Mechanics of Solids, 22:4 (2017), 737–750 | DOI | Zbl
[11] A.M. Khludnev, T.S. Popova, “On junction problem for elastic Timoshenko inclusion and semi-rigid inclusion”, Mat. Zamet. SVFU, 25:1 (2018), 73–89 | DOI | Zbl
[12] N.V. Neustroeva, N.P. Lazarev, “Junction problem for Euler-Bernoulli and Timoshenko elastic beams”, Sib. Èlektron. Mat. Izv., 13 (2016), 26–37 (in Russian) | DOI | Zbl
[13] Yu. A. Bogan, “Homogenization of a nonhomogeneous spring beam with elements jointed by hinges of finite rigidity”, Sib. Zh. Ind. Mat., 1:2 (1998), 67–72 (in Russian) | Zbl
[14] G. Leugering, S.A. Nazarov, A.S. Slutskij, “The asymptotic analysis of a junction of two elastic beams”, Z. Angew. Math. Mech., 99 (2019), e201700192 | DOI | Zbl
[15] G. Leugering, S.A. Nazarov, A.S. Slutskij, J. Taskinen, “Asymptotic analysis of a bit brace shaped junction of thin rods”, Z. Angew. Math. Mech., 100 (2020), e201900227 | DOI | Zbl
[16] S. Caddemi, I. Calio, F. Cannizzaro, “The influence of multiple cracks on tensile and compressive buckling of shear deformable beams”, Int. J. of Solids and Structures, 50:20–21 (2013), 3166–3183 | DOI
[17] A. Palmeri, A. Cicirello, “Physically-based Dirac's delta functions in the static analysis of multi-cracked Euler - Bernoulli and Timoshenko beams”, Int. J. of Solids and Structures, 48:14–15 (2011), 2184–2195 | DOI
[18] D.S. Mueller-Hoeppe, P. Wriggers, S. Loehnert, “Crack face contact for a hexahedral-based XFEM formulation”, Comput. Mech., 49:6 (2012), 725–734 | DOI | Zbl
[19] A.M. Khludnev, T.S. Popova, “Equilibrium problem for elastic body with delaminated T-shape inclusion”, J. Comput. Appl. Math., 376 (2020), 112870 | DOI | Zbl
[20] A.M. Khludnev, “T-shape inclusion in elastic body with a damage parameter”, J. Comput. Appl. Math., 393 (2021), 113540 | DOI | Zbl
[21] A.M. Khludnev, Elasticity Problems in Non-Smooth Domains, Fizmatlit, M., 2010 (in Russian)
[22] J.-L. Lions, Some methods of solving non-linear boundary value problems, Dunod, Paris, 1969
[23] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT Press, Southampton, Boston, 2000
[24] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, “Crack problem within the context of implicitly constituted quasi-linear viscoelasticity”, Math. Models Methods Appl. Sci., 29:2 (2019), 355–372 | DOI | Zbl
[25] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, “On the states of stress and strain adjacent to a crack in a strain-limiting viscoelastic body”, Math. Mech. Solids, 23 (2018), 433–444 | DOI | Zbl
[26] T.S. Popova, “Equilibrium problem for a viscoelastic body with a thin rigid inclusion”, Mat. Zamet. SVFU, 21:1 (2014), 47–55 | Zbl
[27] T.S. Popova, “Problems of thin inclusions in a two-dimensional viscoelastic body”, J. Appl. Ind. Math., 12 (2018), 313–324 | DOI
[28] E.M. Rudoy, N.P. Lazarev, “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko beam”, J. Comput. Appl. Math., 334 (2018), 18–26 | DOI | Zbl
[29] V.M. Alexandrov, B.I. Smetanin, B.V. Sobol, Thin Stress Concentrators in Elastic Bodies, Fizmatlit, M., 1993 (in Russian)
[30] M. Goudarzi, F. Dal Corso, D. Bigoni, A. Simone, “Dispersion of rigid line inclusions as stiffeners and shear band instability triggers”, Int. J. of Solids and Structures, 210–211 (2021), 255–272 | DOI
[31] L.T. Berezhnitsky, V.V. Panasyuk, N.G. Stashchuk, Interaction of Rigid Linear Inclusions and Cracks in a Deformable Body, Naukova dumka, Kiev, 1983 (in Russian)
[32] E. Sanches-Palencia, Non-Homogeneous Media and Vibrations Theory, Mir, M., 1984
[33] M.S. Agranovich, Sobolev Spaces, their Generalizations, and Elliptic Problems in Domains with Smooth and Lipschitz Boundaries, MCNMO, M., 2013 (in Russian)