The problem on T-shape junction of thin inclusions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1578-1593 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the problem of equilibrium of a two-dimensional elastic body containing two contacting thin inclusions. One of the inclusions is elastic and is modeled within the Timoshenko beam theory. The other inclusion is rigid and is characterized by a given structure of displacement functions. The inclusions intersect, forming a T-shaped system in an elastic matrix. Two cases of junction are considered: in the absence of a connection between the inclusions and for the case of perfect adhesion between them. It is assumed that the elastic inclusion delaminates from the elastic matrix forming a crack. Due to the presence of a crack, the elastic body occupies a domain with a cut, while on the cut edges, as on a part of the boundary, boundary conditions of the form of inequalities are set. The problem is posed as a variational one, and a complete differential formulation in the form of a boundary value problem is also obtained, including the junction conditions at a common point of inclusions. The equivalence of the variational and differential formulations of the problem is proved under the condition of sufficient smoothness of the solutions.
Keywords: variational inequality, Timoshenko inclusion, thin elastic inclusion, thin rigid inclusion, crack, non-penetration conditions, nonlinear boundary conditions, junction problem.
@article{SEMR_2024_21_2_a43,
     author = {T. S. Popova},
     title = {The problem on {T-shape} junction of thin inclusions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1578--1593},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a43/}
}
TY  - JOUR
AU  - T. S. Popova
TI  - The problem on T-shape junction of thin inclusions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1578
EP  - 1593
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a43/
LA  - ru
ID  - SEMR_2024_21_2_a43
ER  - 
%0 Journal Article
%A T. S. Popova
%T The problem on T-shape junction of thin inclusions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1578-1593
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a43/
%G ru
%F SEMR_2024_21_2_a43
T. S. Popova. The problem on T-shape junction of thin inclusions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1578-1593. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a43/

[1] A.M. Khludnev, “Thin rigid inclusions with delaminations in elastic plates”, Eur. J. Mech., A, Solids, 32 (2012), 69–75 | DOI | Zbl

[2] T. Popova, G.A. Rogerson, “On the problem of a thin rigid inclusion embedded in a Maxwell material”, Z. Angew. Math. Phys., 67:4 (2016), 105 | DOI | Zbl

[3] E. M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a thin delaminated rigid inclusion”, Journal of Applied and Industrial Mathematics, 10:2 (2016), 264–276 | DOI | Zbl

[4] A.M. Khludnev, G. Leugering, “On elastic bodies with thin rigid inclusions and cracks”, Math. Methods Appl. Sci., 33:16 (2010), 1955–1967 | DOI | Zbl

[5] N.P. Lazarev, T.S. Popova, G.A. Rogerson, “Optimal control of the radius of a rigid circular inclusion in inhomogeneous two-dimensional bodies with cracks”, Z. Angew. Math. Phys., 69:3 (2018), 53 | DOI | Zbl

[6] H. Itou, A.M. Khludnev, “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Meth. Appl. Sci., 39:17 (2016), 4980–4993 | DOI | Zbl

[7] A.M. Khludnev, G.R. Leugering, “On Timoshenko thin elastic inclusions inside elastic bodies”, Math. Mech. Solids, 20:5 (2015), 495–511 | DOI | Zbl

[8] V.V. Shcherbakov, “The Griffith formula and $J$-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | Zbl

[9] A.M. Khludnev, T.S. Popova, “Timoshenko inclusions in elastic bodies crossing an external boundary at zero angle”, Acta Mech. Solida Sin., 30:3 (2017), 327–333 | DOI

[10] A.M. Khludnev, L. Faella, T.S. Popova, “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Mathematics and Mechanics of Solids, 22:4 (2017), 737–750 | DOI | Zbl

[11] A.M. Khludnev, T.S. Popova, “On junction problem for elastic Timoshenko inclusion and semi-rigid inclusion”, Mat. Zamet. SVFU, 25:1 (2018), 73–89 | DOI | Zbl

[12] N.V. Neustroeva, N.P. Lazarev, “Junction problem for Euler-Bernoulli and Timoshenko elastic beams”, Sib. Èlektron. Mat. Izv., 13 (2016), 26–37 (in Russian) | DOI | Zbl

[13] Yu. A. Bogan, “Homogenization of a nonhomogeneous spring beam with elements jointed by hinges of finite rigidity”, Sib. Zh. Ind. Mat., 1:2 (1998), 67–72 (in Russian) | Zbl

[14] G. Leugering, S.A. Nazarov, A.S. Slutskij, “The asymptotic analysis of a junction of two elastic beams”, Z. Angew. Math. Mech., 99 (2019), e201700192 | DOI | Zbl

[15] G. Leugering, S.A. Nazarov, A.S. Slutskij, J. Taskinen, “Asymptotic analysis of a bit brace shaped junction of thin rods”, Z. Angew. Math. Mech., 100 (2020), e201900227 | DOI | Zbl

[16] S. Caddemi, I. Calio, F. Cannizzaro, “The influence of multiple cracks on tensile and compressive buckling of shear deformable beams”, Int. J. of Solids and Structures, 50:20–21 (2013), 3166–3183 | DOI

[17] A. Palmeri, A. Cicirello, “Physically-based Dirac's delta functions in the static analysis of multi-cracked Euler - Bernoulli and Timoshenko beams”, Int. J. of Solids and Structures, 48:14–15 (2011), 2184–2195 | DOI

[18] D.S. Mueller-Hoeppe, P. Wriggers, S. Loehnert, “Crack face contact for a hexahedral-based XFEM formulation”, Comput. Mech., 49:6 (2012), 725–734 | DOI | Zbl

[19] A.M. Khludnev, T.S. Popova, “Equilibrium problem for elastic body with delaminated T-shape inclusion”, J. Comput. Appl. Math., 376 (2020), 112870 | DOI | Zbl

[20] A.M. Khludnev, “T-shape inclusion in elastic body with a damage parameter”, J. Comput. Appl. Math., 393 (2021), 113540 | DOI | Zbl

[21] A.M. Khludnev, Elasticity Problems in Non-Smooth Domains, Fizmatlit, M., 2010 (in Russian)

[22] J.-L. Lions, Some methods of solving non-linear boundary value problems, Dunod, Paris, 1969

[23] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT Press, Southampton, Boston, 2000

[24] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, “Crack problem within the context of implicitly constituted quasi-linear viscoelasticity”, Math. Models Methods Appl. Sci., 29:2 (2019), 355–372 | DOI | Zbl

[25] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, “On the states of stress and strain adjacent to a crack in a strain-limiting viscoelastic body”, Math. Mech. Solids, 23 (2018), 433–444 | DOI | Zbl

[26] T.S. Popova, “Equilibrium problem for a viscoelastic body with a thin rigid inclusion”, Mat. Zamet. SVFU, 21:1 (2014), 47–55 | Zbl

[27] T.S. Popova, “Problems of thin inclusions in a two-dimensional viscoelastic body”, J. Appl. Ind. Math., 12 (2018), 313–324 | DOI

[28] E.M. Rudoy, N.P. Lazarev, “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko beam”, J. Comput. Appl. Math., 334 (2018), 18–26 | DOI | Zbl

[29] V.M. Alexandrov, B.I. Smetanin, B.V. Sobol, Thin Stress Concentrators in Elastic Bodies, Fizmatlit, M., 1993 (in Russian)

[30] M. Goudarzi, F. Dal Corso, D. Bigoni, A. Simone, “Dispersion of rigid line inclusions as stiffeners and shear band instability triggers”, Int. J. of Solids and Structures, 210–211 (2021), 255–272 | DOI

[31] L.T. Berezhnitsky, V.V. Panasyuk, N.G. Stashchuk, Interaction of Rigid Linear Inclusions and Cracks in a Deformable Body, Naukova dumka, Kiev, 1983 (in Russian)

[32] E. Sanches-Palencia, Non-Homogeneous Media and Vibrations Theory, Mir, M., 1984

[33] M.S. Agranovich, Sobolev Spaces, their Generalizations, and Elliptic Problems in Domains with Smooth and Lipschitz Boundaries, MCNMO, M., 2013 (in Russian)