Rotationally symmetric solutions to isothermal compressible Navier-Stokes equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1227-1294 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a boundary value problem for compressible Navier-Stokes equations with the pressure function $p=\varrho$, where $\varrho$ is the density of fluid. It is assumed the given data and a flow domain are invariant with respect to rotations around the vertical axis. The existence of weak rotationally symmetric solutions is proved.
Keywords: isothermal fluid.
Mots-clés : viscous gas, concentrations problem
@article{SEMR_2024_21_2_a42,
     author = {P. I. Plotnikov},
     title = {Rotationally symmetric solutions to isothermal compressible {Navier-Stokes} equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1227--1294},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a42/}
}
TY  - JOUR
AU  - P. I. Plotnikov
TI  - Rotationally symmetric solutions to isothermal compressible Navier-Stokes equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1227
EP  - 1294
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a42/
LA  - en
ID  - SEMR_2024_21_2_a42
ER  - 
%0 Journal Article
%A P. I. Plotnikov
%T Rotationally symmetric solutions to isothermal compressible Navier-Stokes equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1227-1294
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a42/
%G en
%F SEMR_2024_21_2_a42
P. I. Plotnikov. Rotationally symmetric solutions to isothermal compressible Navier-Stokes equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1227-1294. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a42/

[1] D. Adams, L. Hedberg, Function spaces and potential theory, Springer-Verlag, Berlin, 1995 | Zbl

[2] A. Calderón, A. Zygmund, “On the existence of certain singular integrals”, Acta Math., 88 (1952), 85–139 | DOI | Zbl

[3] H. Bahouri, J. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Springer, Berlin, 2011 | Zbl

[4] J. Dieudonnè, Foundations of modern analysis, Academic press, New-York, 1960 | Zbl

[5] B. Ducomet, S. Nečasová, A. Vasseur, “On spherically symmetric motions of a viscous compressible barotropic and selfgravitating gas”, J. Math. Fluid Mech., 13:2 (2011), 191–211 | DOI | Zbl

[6] E. Feireisl, A. Novotný , H. Petzeltová, “On the existence of globally defined weak solutions to the Navier-Stokes equations”, J. Math. Fluid Mech., 3:4 (2001), 358–392 | DOI | Zbl

[7] E. Feireisl, Dynamics of viscous compressible fluids, Oxford University Press, Oxford, 2004 | Zbl

[8] I. Fonseca, G. Leoni, Mordern methods in the calculus of variations: $L^p$ spaces, Springer, New-York, 2007 | Zbl

[9] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin etc., 1983 | Zbl

[10] S. Jiang, P. Zhang, “On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations”, Commun. Math. Phys., 215:3 (2001), 559–581 | DOI | Zbl

[11] S. Jiang, P. Zhang, “Axisymmetric solutions to the 3D Navier-Stokes equations for compressible isentropic fluids”, J. Math. Pures Appl., 82:8 (2003), 949–973 | DOI | Zbl

[12] P.-L. Lions, Mathematical topics in fluid dynamics, v. 2, Compressible models, Clarendon Press, Oxford, 1998 | Zbl

[13] P.-L.Lions, “On some challenging problems in nonlinear partial differential equations”, Mathematics: Frontiers and Perspectives, eds. Arnold V. et al., AMS, Providence, 2000, 121–135 | Zbl

[14] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and its Applications, 27, Oxford University Press, Oxford, 2004 | Zbl

[15] M. Padula, “Existence of global solutions for 2-dimensional viscous compressible flows”, J. Funct. Anal., 69 (1986), 1–20 | DOI | Zbl

[16] P.I. Plotnikov, W. Weigant, “Isothermal Navier-Stokes equations and Radon transform”, SIAM J. Math. Anal., 47:1 (2015), 626–652 | DOI | Zbl

[17] P.I. Plotnikov, “Weak solutions of $3D$ compressible Navier-Stokes equations in critical case”, J. Math. Fluid Mech., 25:3 (2023), 50 | DOI | Zbl

[18] J. Simon, “Compact sets in the space $L^p(0,T; B)$”, Ann. Mat. Pure Appl., IV. Ser., 146 (1987), 65–96 | DOI | Zbl

[19] W.Sun, S. Jiang, Z. Guo, “Helically symmetric solutions to the 3D Navier-Stokes equations for compressible isentropic fluids”, J. Differ. Equations, 222:2 (2006), 263–296 | DOI | Zbl

[20] W. Weigant, P.I. Plotnikov, “Rotationally symmetric viscous gas flows”, Comput. Math. Math. Phys., 57:3 (2017), 387–400 | DOI | Zbl

[21] Xianpeng Hu, “Hausdorff dimension of concentration for isentropic compressible Navier-Stokes equations”, Arch. Ration. Mech. Anal., 234:1 (2019), 375–416 | DOI | Zbl

[22] Xianpeng Hu, “Weak solutions for compressible isentropic Navier-Stokes equations in dimensions three”, Arch. Ration. Mech. Anal., 242:3 (2021), 1907–1945 | DOI | Zbl