Inverse problem on chaotic dynamics of a polymer molecule
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1167-1180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, it is shown that the problem of chaotic dynamics of a polymer molecule in a liquid can be written as a coefficient inverse problem for a nonlocal in time parabolic equation. The weak solvability of this inverse problem is established for the cases of the Dirichlet and Neumann boundary conditions.
Keywords: polymer chain, chaotic dynamics, inverse problem, solvability.
Mots-clés : nonlocal parabolic equation
@article{SEMR_2024_21_2_a41,
     author = {V. N. Starovoitov and A. A. Titova},
     title = {Inverse problem on chaotic dynamics of a polymer molecule},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1167--1180},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a41/}
}
TY  - JOUR
AU  - V. N. Starovoitov
AU  - A. A. Titova
TI  - Inverse problem on chaotic dynamics of a polymer molecule
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1167
EP  - 1180
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a41/
LA  - ru
ID  - SEMR_2024_21_2_a41
ER  - 
%0 Journal Article
%A V. N. Starovoitov
%A A. A. Titova
%T Inverse problem on chaotic dynamics of a polymer molecule
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1167-1180
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a41/
%G ru
%F SEMR_2024_21_2_a41
V. N. Starovoitov; A. A. Titova. Inverse problem on chaotic dynamics of a polymer molecule. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1167-1180. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a41/

[1] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in mathematical physics, Marcel Dekker, New York, 2000 | Zbl

[2] V.N. Starovoitov, “Boundary value problem for a global-in-time parabolic equation”, Math. Methods Appl. Sci., 44:1 (2021), 1118–1126 | DOI | Zbl

[3] C. Walker, “Strong solutions to a nonlocal-in-time semilinear heat equation”, Q. Appl. Math., 79:2 (2021), 265–272 | DOI | Zbl

[4] J.R. Cannon, Y. Lin, “Determination of a parameter $p(t)$ in some quasi-linear parabolic differential equations”, Inverse Probl., 4:1 (1988), 35–45 | DOI | Zbl

[5] A.I. Kozhanov, “Parabolic equations with unknown time-dependent coefficients”, Comput. Math. Math. Phys., 57:6 (2017), 956–966 | DOI | Zbl

[6] V.N. Starovoitov, B.N. Starovoitova, “Modeling the dynamics of polymer chains in water solution. Application to sensor design”, J. Phys.: Conf. Ser., 894 (2017), 012088 | DOI

[7] V.N. Starovoitov, “Solvability of boundary value problem of chaotic dynamics of polymer molecule in the case of bounded interaction potential”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1714–1719 | DOI | Zbl

[8] V.N. Starovoitov, “Solvability of a regularized boundary value problem of chaotic dynamics of a polymer molecule”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1597–1604 | Zbl

[9] O.A. Ladyženskaja, V.A. Solonnikov, N.N. Ural'ceva, “Linear and quasi-linear equations of parabolic type”, Translations of Mathematical Monographs, 23, AMS, Providence, 1968 | Zbl