Mots-clés : dynamic reconstruction
@article{SEMR_2024_21_2_a40,
author = {V. L. Rozenberg},
title = {Input reconstruction problem for a nonlinear system of differential equations: the case of incomplete measurements},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1097--1107},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a40/}
}
TY - JOUR AU - V. L. Rozenberg TI - Input reconstruction problem for a nonlinear system of differential equations: the case of incomplete measurements JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 1097 EP - 1107 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a40/ LA - en ID - SEMR_2024_21_2_a40 ER -
%0 Journal Article %A V. L. Rozenberg %T Input reconstruction problem for a nonlinear system of differential equations: the case of incomplete measurements %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 1097-1107 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a40/ %G en %F SEMR_2024_21_2_a40
V. L. Rozenberg. Input reconstruction problem for a nonlinear system of differential equations: the case of incomplete measurements. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1097-1107. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a40/
[1] R.W. Brockett, M.D. Mesarović, “The reproducivility of multivariable systems”, J. Math. Anal. Appl., 11:1-3 (1965), 548–563 | DOI | Zbl
[2] M.K. Sain, J.L. Massey, “Invertibility of linear time-invariant dynamical systems”, IEEE Trans. Automat. Contr., 14:2 (1969), 141–149 | DOI | MR
[3] J.P. Norton, An Introduction to identification, Acad. Press, London etc., 1986 | Zbl
[4] A.N. Tikhonov, V.Ya. Arsenin, Solutions of ill-posed problems, Wiley, New York etc., 1977 | Zbl
[5] S.I. Kabanikhin, Inverse and Ill-posed problems, De Gruyter, Berlin, 2012 | Zbl
[6] A.V. Kryazhimskii, Yu.S. Osipov, “Modelling of a control in a dynamic system”, Eng. Cybern., 21:2 (1984), 38–47 | Zbl
[7] Yu.S. Osipov, A.V. Kryazhimskii, Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, Amsterdam, 1995 | Zbl
[8] Yu.S. Osipov, A.V. Kryazhimskii, V.I. Maksimov, “Some algorithms for the dynamic reconstruction of inputs”, Proc. Steklov Inst. Math., 275, Suppl. 1 (2011), S86–S120 | DOI | Zbl
[9] V.I. Maksimov, “The methods of dynamical reconstruction of an input in a system of ordinary differential equations”, J. Inverse Ill-Posed Problems, 29:1 (2021), 125–156 | DOI | Zbl
[10] N.N. Krasovskii, A.I. Subbotin, Game-theoretical control problems, Springer, New York etc., 1988 | Zbl
[11] A.V. Kryazhimskii, Yu.S. Osipov, “On stable positional renewal of control according to measurements of a part of coordinates”, Some control and stability problems, eds. A.V. Kim and V.I. Maksimov, UrO Akad. Nauk SSSR Press, Sverdlovsk, 1989, 33–47 | Zbl
[12] V.I. Maksimov, Problems of dynamic reconstruction of the inputs of infinite-dimensional systems, UrO RAN Press, Ekaterinburg, 2000
[13] V.L. Rozenberg, “On a problem of dynamical input reconstruction for a system of special type under conditions of uncertainty”, AIMS Math., 5:5 (2020), 4108–4120 | DOI | Zbl
[14] M.S. Blizorukova, V.I. Maksimov, “Dynamic discrepancy method in the problem of reconstructing the input of a system with time delay control”, Comput. Math. Math. Phys., 61:3 (2021), 359–367 | DOI | Zbl
[15] P.G. Surkov, “Approximate calculation of the Caputo-type fractional derivative from inaccurate data. Dynamical approach”, Fract. Calc. Appl. Anal., 24:3 (2021), 895–922 | DOI | Zbl
[16] V.L. Rozenberg, “On a problem of dynamic disturbance reconstruction in a nonlinear system of differential equations”, Tr. Inst. Mat. Mekh. UrO RAN, 27, no. 2, 2021, 197–207 | MR
[17] A.Yu. Vdovin, On the problem of reconstruction of perturbation in a dynamical system, Ph.D. Thesis, UrO Akad. Nauk SSSR Press, Sverdlovsk, 1989