Equilibrium problem for a Kirchhoff-Love plate contacting with the lateral surface along a strip of a given width
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 729-740.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new model of a Kirchhoff-Love plate is justified, which may come into contact by its lateral surface with a non-deformable obstacle along a strip of a given width. The non-deformable obstacle restricts displacements of the plate along the outer lateral surface. The obstacle is specified by a cylindrical surface, the generatrices of which are perpendicular to the midplane of the plate. A problem is formulated in variational form. A set of admissible displacements is determined in a suitable Sobolev space in the framework of a clamping condition and a non-penetration condition of the Signorini type. The non-penetration condition is given as a system of two inequalities. The existence and uniqueness of a solution to the problem is proven. An equivalent differential formulation and optimality conditions are found under the assumption of additional regularity of the solution to the variational problem. A qualitative connection has been established between the proposed model and a previously studied problem in which the plate is in contact over the entire lateral surface.
Keywords: contact problem, variational inequality, nonpenetration condition.
Mots-clés : limit passage
@article{SEMR_2024_21_2_a4,
     author = {N. P. Lazarev and D. Y. Nikiforov and G. M. Semenova},
     title = {Equilibrium problem for a {Kirchhoff-Love} plate contacting with the lateral surface along a strip of a given width},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {729--740},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a4/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - D. Y. Nikiforov
AU  - G. M. Semenova
TI  - Equilibrium problem for a Kirchhoff-Love plate contacting with the lateral surface along a strip of a given width
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 729
EP  - 740
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a4/
LA  - ru
ID  - SEMR_2024_21_2_a4
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A D. Y. Nikiforov
%A G. M. Semenova
%T Equilibrium problem for a Kirchhoff-Love plate contacting with the lateral surface along a strip of a given width
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 729-740
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a4/
%G ru
%F SEMR_2024_21_2_a4
N. P. Lazarev; D. Y. Nikiforov; G. M. Semenova. Equilibrium problem for a Kirchhoff-Love plate contacting with the lateral surface along a strip of a given width. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 729-740. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a4/