@article{SEMR_2024_21_2_a4,
author = {S. L. Kuznetsov},
title = {Strong conservativity and completeness for fragments of infinitary action logic},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {789--809},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a4/}
}
TY - JOUR AU - S. L. Kuznetsov TI - Strong conservativity and completeness for fragments of infinitary action logic JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 789 EP - 809 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a4/ LA - en ID - SEMR_2024_21_2_a4 ER -
S. L. Kuznetsov. Strong conservativity and completeness for fragments of infinitary action logic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 789-809. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a4/
[1] H. Andréka, Sz. Mikulás, “Lambek calculus and its relational semantics: completeness and incompleteness”, J. Logic Lang. Inf., 3:1 (1994), 1–37 | DOI | MR | Zbl
[2] H. Andréka, Sz. Mikulás, “Axiomatizability of positive algebras of binary relations”, Algebra Univers., 66:1-2 (2011), 7–34 | DOI | MR | Zbl
[3] A. Beckmann, S. Buss, “Corrected upper bounds for free-cut elimination”, Theor. Comput. Sci., 412:39 (2011), 5433–5445 | DOI | MR | Zbl
[4] W. Buszkowski, “Compatibility of a categorial grammar with an associated category system”, Z. Math. Logik Grundlagen Math., 28 (1982), 229–238 | DOI | MR | Zbl
[5] W. Buszkowski, “On the complexity of the equational theory of relational action algebras”, Relations and Kleene Algebra in Computer Science, Lect. Notes Comput. Sci., 4136, ed. R.A. Schmidt, Springer, Berlin, 2006, 106–119 | DOI | MR | Zbl
[6] W. Buszkowski, “On action logic: equational theories of action algebras”, J. Log. Comput., 17:1 (2007), 199–217 | DOI | MR | Zbl
[7] W. Buszkowski, E. Palka, “Infinitary action logic: complexity, models and grammars”, Stud. Log., 89:1 (2008), 1–18 | DOI | MR | Zbl
[8] W. Buszkowski, “Lambek calculus and substructural logics”, Linguist. Analysis, 36:1–4 (2010), 15–48 http://buszko.home.amu.edu.pl/LCaSLpr.pdf
[9] N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated lattices: an algebraic glimpse at substructural logics, Studies in Logic and the Foundations of Mathematics, 151, Elsevier, Amsterdam, 2007 https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/151/ | MR | Zbl
[10] M. Kanovich, S. Kuznetsov, A. Scedrov, “Language models for some extensions of the Lambek calculus”, Inf. Comput., 287 (2022), 104760 | DOI | MR | Zbl
[11] S.C. Kleene, “Representation of events in nerve nets and finite automata”, Automata Studies, eds. C. Shannon, J. McCarthy, Princeton University Press, Princeton, 1956, 3–41 | DOI | MR
[12] D. Kozen, “On action algebras”, Logic and Information Flow, eds. J. van Eijck, A. Visser, MIT Press, 1994, 78–88 | DOI | MR
[13] W. Krull, “Axiomatische Begründung der allgemeinen Idealtheorie”, Sitzber. Phys.-Med. Soc. Erlangen, 56 (1924), 47–63 https://www.zobodat.at/pdf/Sitzber-physik-med-Soc-Erlangen_56-57_0047-0063.pdf | Zbl
[14] S. Kuznetsov, “$*$-continuity vs. induction: divide and conquer”, Advances in Modal Logic, 12, eds. G. Bezhanishvili et al., College Publications, London, 2018, 493–510 http://www.aiml.net/volumes/volume12/Kuznetsov.pdf | MR | Zbl
[15] S. Kuznetsov, “The ‘long rule’ in the Lambek calculus with iteration: undecidability without meets and joins”, Advances in Modal Logic, 13, eds. N. Olivetti et al., College Publications, London, 2020, 425–440 http://www.aiml.net/volumes/volume13/Kuznetsov.pdf | MR | Zbl
[16] S.L. Kuznetsov, N.S. Ryzhkova, “A restricted fragment of the Lambek calculus with iteration and intersection operations”, Algebra Logic, 59:2 (2020), 129–146 | DOI | MR | Zbl
[17] S.L. Kuznetsov, S.O. Speranski, “Infinitary action logic with exponentiation”, Ann. Pure Appl. Logic, 173:2 (2022), 103057 | DOI | MR | Zbl
[18] S. L. Kuznetsov, “Relational models for the Lambek calculus with intersection and constants”, Log. Methods Comput. Sci., 19:4 (2023), 32 | DOI | MR | Zbl
[19] S.L. Kuznetsov, “Syntactic concept lattice models for infinitary action logic”, Logic, Language, Information, and Computation, WoLLIC 2024, Lect. Notes Comput. Sci., 14672, eds. G. Metcalfe et al., Springer, Cham, 2024, 93–107 | DOI | MR
[20] J. Lambek, “The mathematics of sentence structure”, Amer. Math. Mon., 65:3 (1958), 154–170 | DOI | MR | Zbl
[21] Sz. Mikulás, “The equational theories of representable residuated semigroups”, Synthese, 192:7 (2015), 2151–2158 | DOI | MR | Zbl
[22] Sz. Mikulás, “Lower semilattice-ordered residuated semigroups and substructural logic”, Stud. Log., 103:3 (2015), 453–478 | DOI | MR | Zbl
[23] R. Moot, C. Retoré, The logic of categorial grammars. A deductive account of natural language syntax and semantics, Lecture Notes in Computer Science, 6850, Springer, Berlin, 2012 | DOI | MR | Zbl
[24] H. Ono, Y. Komori, “Logics without the contraction rule”, J. Symb. Log., 50:1 (1985), 169–201 | DOI | MR | Zbl
[25] E. Palka, “An infinitary sequent system for the equational theory of $*$-continuous action lattices”, Fundam. Inform., 78:2 (2007), 295–309 https://content.iospress.com/articles/fundamenta-informaticae/fi78-2-06 | DOI | MR | Zbl
[26] M. Pentus, “Models for the Lambek calculus”, Ann. Pure Appl. Logic, 75:1-2 (1995), 179–213 | DOI | MR | Zbl
[27] M. Pentus, “Free monoid completeness of the Lambek calculus allowing empty premises”, Proc. Logic Colloquium '96, Lect. Notes Log., 12, eds. M. Larrazabal et al., Springer, Berlin, 1998, 171–209 | DOI | MR | Zbl
[28] V. Pratt, “Action logic and pure induction”, JELIA 1990: Logics in AI, Lect. Notes Comput. Sci., 478, ed. J. van Eijck, Springer, Berlin etc., 1991, 97–120 | DOI | MR | Zbl
[29] I. Sedlár, “Iterative division in the distributive full non-associative Lambek calculus”, Dynamic Logic. New Trends and Applications, DALI 2019, Lect. Notes Comput. Sci., 12005, eds. L. Soares Barbosa et al., Springer, Cham, 2020, 141–154 | DOI | MR | Zbl
[30] G. Takeuti, Proof theory, 2nd ed., North-Holland, Amsterdam etc., 1987 | MR | Zbl
[31] M. Ward, R.P. Dilworth, “Residuated lattices”, Trans. Am. Math. Soc., 45 (1939), 335–354 | DOI | MR | Zbl