@article{SEMR_2024_21_2_a38,
author = {E. I. Leonova},
title = {Homogenization of the static anti-plane shear model for the reinforced composite},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1042--1063},
year = {2024},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a38/}
}
TY - JOUR AU - E. I. Leonova TI - Homogenization of the static anti-plane shear model for the reinforced composite JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 1042 EP - 1063 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a38/ LA - ru ID - SEMR_2024_21_2_a38 ER -
E. I. Leonova. Homogenization of the static anti-plane shear model for the reinforced composite. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1042-1063. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a38/
[1] S.A. Sazhenkov, I.V. Fankina, A.I. Furtsev, P.V. Gilev, A.G. Gorynin, O.G. Gorynina, V.M. Karnaev, E.I. Leonova, “Multiscale analysis of a model problem of a thermoelastic body with thin inclusions”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 282–318 | DOI | Zbl
[2] V.V. Zhikov, “Homogenization of elasticity problems on singular structures”, Izv. Math., 66:2 (2002), 299–365 | DOI | Zbl
[3] A.I. Furtsev, E.M. Rudoy, “Variational approach to modeling soft and stiff interfaces in the Kirchhoff-Love theory of plates”, Int. J. Solids Struct., 202 (2020), 562–574 | DOI
[4] E.M. Rudoy, “Asymptotic modelling of bonded plates by a soft thin adhesive layer”, Sib. Èlectron. Mat. Izv., 17 (2020), 615–625 | DOI | Zbl
[5] A.I. Furtsev, I.V. Fankina, A.A. Rodionov, D.A. Ponomarev, “Asymptotic modeling of steady vibrations of thin inclusions in a thermoelastic composite”, Z. Angew. Math. Phys., 74:5 (2023), 195 | DOI | Zbl
[6] S. Dumont, F. Lebon, M.L. Raffa, R. Rizzoni, “Towards nonlinear imperfect interface models including micro-cracks and smooth roughness”, Ann. Solid Struct. Mech., 9 (2017), 13–27 | DOI
[7] S. Dumont, R. Rizzoni, F. Lebon, E. Sacco, “Soft and hard interface models for bonded elements”, Composites Part B: Engineering, 153 (2018), 480–490 | DOI
[8] R. Rizzoni, F. Lebon, “Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases”, Mech. Res. Commun., 51 (2013), 39–50 | DOI
[9] I.V. Fankina, A.I. Furtsev, E.M. Rudoy, S.A. Sazhenkov, “The homogenized quasi-static model of a thermoelastic composite stitched with reinforcing threads”, J. Comput. Appl. Math., 434 (2023), 115346 | DOI | Zbl
[10] I.V. Fankina, A.I. Furtsev, E.M. Rudoy, S.A. Sazhenkov, “Multiscale analysis of stationary thermoelastic vibrations of a composite material”, Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 380:2236 (2022), 20210354 | DOI
[11] V.D. Kupradze, T.G. Gegelia, M.O. Bašeleǐšvili, T.V. Burčuladze, Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, North-Holland Publishing Company, Amsterdam etc., 1979 | Zbl
[12] G. Allaire, A. Damlamian, U. Hornung, “Two-scale convergence on periodic surfaces and applications”, Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media (1995), eds. A. Bourgeat et al., World Scientific Pub., Singapore, 1996, 15–25
[13] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:6 (1992), 1482–1518 | DOI | Zbl
[14] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | Zbl
[15] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Physics, 127, Springer, Berlin etc., 1980 | DOI | Zbl
[16] N.S. Bakhvalov, G.P. Panasenko, Homogenisation: Averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Kluwer, Dordrecht etc., 1989 | DOI | Zbl