On rigid inclusions and cavities in elastic body with a crack: non-coercive case
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1024-1041 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, we consider an equilibrium problem for an elastic body with a crack in a case of Neumann boundary conditions at the external boundary. The Neumann boundary conditions imply a non-coercivity of the problem. Inequality constraints are imposed on the solution providing a mutual non-penetration between the crack faces. Various passages to limit with respect to the parameter characterizing a rigidity of the body are analyzed, and limit models are investigated. In particular, an existence of solutions is proved for all cases considered; necessary and sufficient conditions imposed on the external forces are found. The limit models describe the elastic body with a volume rigid inclusion and the body with a cavity. These results are obtained both for the case when the crack is located inside the elastic body and for the case when it extends to the outer boundary.
Keywords: elastic body, crack, non-coercive boundary value problem, cavity.
Mots-clés : volume rigid inclusion
@article{SEMR_2024_21_2_a37,
     author = {A. M. Khludnev},
     title = {On rigid inclusions and cavities in elastic body with a crack: non-coercive case},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1024--1041},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a37/}
}
TY  - JOUR
AU  - A. M. Khludnev
TI  - On rigid inclusions and cavities in elastic body with a crack: non-coercive case
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1024
EP  - 1041
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a37/
LA  - en
ID  - SEMR_2024_21_2_a37
ER  - 
%0 Journal Article
%A A. M. Khludnev
%T On rigid inclusions and cavities in elastic body with a crack: non-coercive case
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1024-1041
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a37/
%G en
%F SEMR_2024_21_2_a37
A. M. Khludnev. On rigid inclusions and cavities in elastic body with a crack: non-coercive case. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1024-1041. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a37/

[1] A.I.Furtsev, “Equilibrium problem for hyperelastic body with rigid inclusion and crack under nonopenetration condition”, Sib. Èlektron. Mat. Izv., 21:1 (2024), 17–40 http://semr.math.nsc.ru/v21/n1/p0017-0040.pdf

[2] A. Furtsev, E. Rudoy, H. Itou, “Modeling of bonded elastic structures by a variational method: theretical and numerical simulation”, Int. J. Solids Structures, 182-183 (2020), 100–111 | DOI

[3] N.P. Lazarev, V.A. Kovtunenko, “Asymptotic analysis of the problem of equilibrium of an inhomogeneous body with hinged rigid inclusions of various widths”, J. Appl. Mech. Tech. Phys., 64:5 (2023), 911–920 | DOI | Zbl

[4] N. Lazarev, N. Romanova, G. Semenova, “Optimal location of a thin rigid inclusion for a problem describing equilibrium of a composite Timoshenko plate with a crack”, J. Inequal. Appl., 2020 (2020), 29 | DOI | Zbl

[5] V.A. Kovtunenko, K. Kunisch, “Shape derivative for penalty-constrained nonsmooth-nonconvex optimization: cohesive crack problem”, J. Optim. Theory Appl., 194:2 (2022), 597–635 | DOI | Zbl

[6] E.M. Rudoy, “Asymptotic modeling of bonded plates by a soft thin adhesive layer”, Sib. Èlektron. Mat. Izv., 17 (2020), 615–625 | DOI | Zbl

[7] V.V. Shcherbakov, “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67:3 (2016), 71 | DOI | Zbl

[8] V.V. Shcherbakov, “Energy release rates for interfacial cracks in elastic bodies with thin semirigid inclusions”, Z. Angew. Math. Phys., 68:1 (2017), 26 | DOI | Zbl

[9] V.V. Shcherbakov, “Shape derivatives of energy and regularity of minimizers for shallow elastic shells with cohesive cracks”, Nonlinear Anal., Real World Appl., 65 (2022), 103505 | DOI | Zbl

[10] A.M. Khludnev, “On modeling elastic bodies with defects”, Sib. Èlektron. Mat. Izv., 15 (2018), 153–166 | DOI | Zbl

[11] V.A. Kovtunenko, G. Leugering, “A shape-topological control problem for nonlinear crack-defect interaction: the anti-plane variational model”, SIAM J.Control Optim., 54:3 (2016), 1329–1351 | DOI | Zbl

[12] N.P. Lazarev, V.A. Kovtunenko, “Signorini-type problems over non-convex sets for composite bodies contacting by sharp edges of rigid inclusions”, MDPI Mathematics, 10:2 (2022), 250 | DOI

[13] A.M. Khludnev, Elasticity problems in non-smooth domains, Fizmatlit, M., 2010

[14] A.M. Khludnev, A.A. Novotny, J. Sokolowski, A. Zochowski, “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mech. Phys. Solids, 57:10 (2009), 1718–1732 | DOI | Zbl

[15] N. Lazarev, E. Rudoy, “Optimal location of a finite set of rigid inclusions in contact problems for inhomogeneous two-dimensional bodies”, J. Comput. Appl. Math., 403 (2022), 113710 | DOI | Zbl

[16] A. Morassi, E. Rosset, “Detecting rigid inclusions, or cavities, in an elastic body”, J. Elasticity, 73:1-3 (2003), 101–126 | DOI | Zbl

[17] A. Morassi, E. Rosset, “Stable determination of cavities in elastic bodies”, Inverse Problems, 20:2 (2004), 453–480 | DOI | Zbl

[18] G. Alessandrini, A. Morassi, E. Rosset, “Detecting an inclusion in an elastic body by boundary measurements”, SIAM J. Math. Anal., 33:6 (2002), 1247–1268 | DOI | Zbl

[19] N. Lazarev, H. Itou, “Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous Kirchhoff-Love plates with a crack”, Math. Mech. Solids, 24:12 (2019), 3743–3752 | DOI | Zbl

[20] H. Attouch, G. Buttazzo, G. Michaille, Variational analysis in Sobolev and BV spaces. Applications to PDEs and optimization, SIAM, Philadelphia, 2014 | Zbl

[21] J.J. Kohn, L. Nirenberg, “Non-coercive boundary value problems”, Commun. Pure Appl. Math., 18 (1965), 443–492 | DOI | Zbl

[22] D. Goeleven, “Noncoercive hemivariational inequality and its applications in nonconvex unilateral mechanics”, Appl. Math., Praha, 41:3 (1996), 203–229 | DOI | Zbl

[23] A.M. Khludnev, I.V. Fankina, “Noncoercive problems for elastic bodies with thin elastic inclusions”, Math. Methods Appl. Sci., 46:13 (2023), 14214–14228 | DOI | Zbl

[24] A.M. Khludnev, “Asymptotics of solutions for two elastic plates with thin junction”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 484–501 http://semr.math.nsc.ru/v19/n2/p484-501.pdf

[25] A.M. Khludnev, “Non-coercive problems for Kirchhoff-Love plates with thin rigid inclusion”, Z. Angew. Math. Phys., 73:2 (2022), 54 | DOI | Zbl

[26] A.M. Khludnev, A.A. Rodionov, “Elastic body with thin nonhomogeneous inclusion in non-coercive case”, Math. Mech. Solids, 28:10 (2023), 2141–2154 | DOI

[27] A.M. Khludnev, A.A. Rodionov, “Elasticity tensor identification in elastic body with thin inclusions: non-coercive case”, J. Optim. Theory Appl., 197:3 (2023), 993–1010 | DOI | Zbl

[28] V.A. Kozlov, V.G. Maz'ya, A.B. Movchan, Asymptotic analysis of fields in a multi-structure, Clarendon Press, Oxford, 1999 | Zbl

[29] P. Mallick, Fiber-reinforced composites-materials, manufacturing, and design, Marcel Dekker, New York, 1993

[30] A. Gaudiello, G. Panasenko, A. Piatnitski, “Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multistructure”, Commun. Contemp. Math., 18:5 (2016), 1550057 | DOI | Zbl