@article{SEMR_2024_21_2_a36,
author = {V. V. Yevstafyeva},
title = {Theorem on the existence of two-point oscillatory solutions to a relay perturbed system with a negative eigenvalue of the matrix},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {990--1010},
year = {2024},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a36/}
}
TY - JOUR AU - V. V. Yevstafyeva TI - Theorem on the existence of two-point oscillatory solutions to a relay perturbed system with a negative eigenvalue of the matrix JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 990 EP - 1010 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a36/ LA - ru ID - SEMR_2024_21_2_a36 ER -
%0 Journal Article %A V. V. Yevstafyeva %T Theorem on the existence of two-point oscillatory solutions to a relay perturbed system with a negative eigenvalue of the matrix %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 990-1010 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a36/ %G ru %F SEMR_2024_21_2_a36
V. V. Yevstafyeva. Theorem on the existence of two-point oscillatory solutions to a relay perturbed system with a negative eigenvalue of the matrix. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 990-1010. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a36/
[1] A.A. Andronov, A.A. Vitt, S.E. Khaĭkin, Theory of oscillators, Pergamon Press, Oxford etc, 1966 | MR | Zbl
[2] B.A. Fleishman, “Harmonic and subharmonic response of an on-off control system to sinusoidal inputs”, J. Franklin Inst., 270:2 (1960), 99–113 | DOI | MR | Zbl
[3] M.A. Krasnosel'skii, A.V. Pokrovskii, “Periodic oscillations in systems with relay nonlinearities”, Sov. Math. Dokl., 15:3 (1974), 873–877 | MR | Zbl
[4] A. Visintin, “P.D.E.s with hysteresis 30 years later”, Discrete Contin. Dyn. Syst. Ser. S, 8:4 (2015), 793–816 | MR | Zbl
[5] A.Yu. Kolesov, Yu.S. Kolesov, Relaxational oscillations in mathematical models of ecology, Proc. Steklov Inst. Math., 199, AMS, Providence, 1995 | MR | Zbl
[6] D.I. Rachinskii, “The Cauchy problem for differential equations with a Mroz hysteresis nonlinearity”, Differ. Equ., 33:8 (1997), 1047–1054 | MR | Zbl
[7] A. Pimenov, D. Rachinskii, “Homoclinic orbits in a two-patch predator-prey model with Preisach hysteresis operator”, Math. Bohem., 139:2 (2014), 285–298 | DOI | MR | Zbl
[8] L. Fang, J. Wang, Q. Zhang, “Identification of extended Hammerstein systems with hysteresis-type input nonlinearities described by Preisach model”, Nonlinear Dyn., 79:2 (2015), 1257–1273 | DOI | Zbl
[9] N.D. Botkin, M. Brokate, E. El Behi-Gornostaeva, “One-phase flow in porous media with hysteresis”, Phys. B: Cond. Matter, 486 (2016), 183–186 | DOI
[10] I.D. Mayergoyz, Mathematical models of hysteresis and their applications, Elsevier, Amsterdam, 2003 | DOI | Zbl
[11] G. Bertotti, I.D. Mayergoyz, The science of hysteresis, Elsevier, Amsterdam, 2005
[12] A. Visintin, “Ten issues about hysteresis”, Acta Appl. Math., 132:1 (2014), 635–647 | DOI | Zbl
[13] V. Hassani, T. Tjahjowidodo, T.N. Do, “A survey on hysteresis modeling, identification and control”, Mech. Syst. Signal Processing, 49:1-2 (2014), 209–233 | DOI
[14] M.A. Krasnosel'skii, A.V. Pokrovskii, Systems with hysteresis, Springer, Berlin etc., 1989 | Zbl
[15] M. Brokate, P. Krejci, “Weak differentiability of scalar hysteresis operators”, Discrete Contin. Dyn. Syst., 35:6 (2015), 2405–2421 | DOI | Zbl
[16] V.I. Utkin, Yu.V. Orlov, “Control systems with vector relays”, Autom. Remote Control, 80:9 (2019), 1671–1680 | DOI | Zbl
[17] C.E.L. da Silva, A. Jacquemard, M.A. Teixeira, “Periodic solutions of a class of non-autonomous discontinuous second-order differential equations”, J. Dyn. Control Syst., 26:1 (2020), 17–44 | DOI | Zbl
[18] A.S. Fursov, R.P. Mitrev, P.A. Krylov, T.S. Todorov, “On the existence of a periodic mode in a nonlinear system”, Differ. Equ., 57:8 (2021), 1076–1087 | DOI | Zbl
[19] M.A. Vasquez-Beltran, B. Jayawardhana, R. Peletier, “Recursive algorithm for the control of output remnant of Preisach hysteresis operator”, IEEE Control Syst. Lett., 5:3 (2021), 1061–1066 | DOI | MR
[20] A.M. Kamachkin, V.V. Yevstafyeva, D.K. Potapov, “The existence of a unique fixed point of mappings generated by a multidimensional system with relay hysteresis”, Differ. Equ., 59:7 (2023), 998–1002 | DOI | Zbl
[21] H. Logemann, E.P. Ryan, “Systems with hysteresis in the feedback loop: Existence, regularity and asymptotic behaviour of solutions”, ESAIM: Control Optim. Calc. Var., 9 (2003), 169–196 | DOI | Zbl
[22] C. Hayashi, “Stability investigation of the nonlinear periodic oscillations”, J. Appl. Phys., 24:3 (1953), 344–348 | DOI | Zbl
[23] Yu.I. Neimark, “Periodic modes and stability in relay systems”, Avtom. Telemekh., 14:5 (1953), 556–569
[24] V.I. Zubov, Oscillations in nonlinear and controlled systems, Sudpromgiz, L., 1962 | Zbl
[25] D.I. Rachinskii, “Asymptotic stability of large-amplitude oscillations in systems with hysteresis”, Nonlinear Differ. Equ. Appl., 6:3 (1999), 267–288 | DOI | Zbl
[26] A.S. Fursov, T.S. Todorov, P.A. Krylov, R.P. Mitrev, “On the existence of oscillatory modes in a nonlinear system with hystereses”, Differ. Equ., 56:8 (2020), 1081–1099 | DOI | Zbl
[27] M.O. Fen, F. Tokmak Fen, “Unpredictable oscillations of SICNNs with delay”, Neurocomputing, 464 (2021), 119–129 | DOI
[28] G.A. Leonov, M.M. Shumafov, V.A. Teshev, K.D. Aleksandrov, “Differential equations with hysteresis operators. Existence of solutions, stability, and oscillations”, Differ. Equ., 53:13 (2017), 1764–1816 | DOI | Zbl
[29] P.-A. Bliman, A.M. Krasnosel'skii, “Periodic solutions of linear systems coupled with relay”, Nonlinear Anal., Theory, Methods Appl., 30:2 (1997), 687–696 | DOI | Zbl
[30] A.M. Solovyov, M.E. Semenov, P.A. Meleshenko, O.O. Reshetova, M.A. Popov, E.G. Kabulova, “Hysteretic nonlinearity and unbounded solutions in oscillating systems”, Procedia Eng., 201 (2017), 578–583 | DOI
[31] M. Brokate, A.V. Pokrovskii, “Asymptotically stable oscillations in systems with hysteresis nonlinearities”, J. Differ. Equ., 150:1 (1998), 98–123 | DOI | Zbl
[32] A.L. Medvedskii, P.A. Meleshenko, V.A. Nesterov, O.O. Reshetova, M.E. Semenov, A.M. Solovyov, “Unstable oscillating systems with hysteresis: problems of stabilization and control”, J. Comput. Syst. Sci. Int., 59:4 (2020), 533–556 | DOI | Zbl
[33] V.V. Yevstafyeva, “On the existence of two-point oscillatory solutions of a perturbed relay system with hysteresis”, Differ. Equ., 57:2 (2021), 155–164 | DOI | Zbl
[34] V.V. Yevstafyeva, “Existence of $T/k$-periodic solutions of a nonlinear nonautonomous system whose matrix has a multiple eigenvalue”, Math. Notes, 109:4 (2021), 551–562 | DOI | Zbl
[35] V.V. Yevstafyeva, “Control design for a perturbed system with an ambiguous nonlinearity”, Autom. Remote Control, 84:3 (2023), 226–239 | DOI | Zbl
[36] A.M. Kamachkin, D.K. Potapov, V.V. Yevstafyeva, “Dynamics of relay systems with hysteresis and harmonic perturbation”, Eurasian Math. J., 15:2 (2024), 48–60 | DOI | Zbl
[37] V.V. Yevstafyeva, A.M. Kamachkin, D.K. Potapov, “Periodic modes in an automatic control system with a three-position hysteresis relay”, Vestn. St. Petersb. Univ. Prikl. Mat. Inform. Prots. Upr., 18:4 (2022), 596–607 | MR
[38] V.V. Yevstafyeva, A.M. Kamachkin, D.K. Potapov, “On one type of oscillating solutions of a second-order ordinary differential equation with a three-position hysteresis relay and perturbation”, Differ. Equ., 59:2 (2023), 153–167 | DOI | Zbl
[39] V.V. Yevstafyeva, “Oscillating solutions of a second-order ordinary differential equation with a three-position hysteresis relay without entering the saturation zones”, Differ. Equ., 59:6 (2023), 726–740 | DOI | Zbl
[40] S. Varigonda, T.T. Georgiou, “Dynamics of relay relaxation oscillators”, IEEE Trans. Autom. Control, 46:1 (2001), 65–77 | DOI | Zbl
[41] V.I. Utkin, Sliding modes and their application in variable structure systems, Mir, M., 1978 | Zbl
[42] A. Jacquemard, M.A. Teixeira, “Periodic solutions of a class of non-autonomous second order differential equations with discontinuous right-hand side”, Physica D: Nonlinear Phenom., 241:22 (2012), 2003–2009 | DOI
[43] M.O. Fen, F. Fen, “Quasilinear systems with unpredictable relay perturbations”, Turk. J. Math., 46:4 (2022), 1369–1383 | DOI | Zbl
[44] Ya.Z. Tsypkin, Relay control systems, Cambridge University Press, Cambridge, 1984 | Zbl
[45] V.V. Yevstafyeva, “Existence of two-point oscillatory solutions of a relay nonautonomous system with multiple eigenvalue of a real symmetric matrix”, Ukr. Math. J., 73:5 (2021), 746–757 | DOI | Zbl
[46] V.V. Yevstafyeva, “Criterion for the existence of two-point oscillatory solution of a perturbed system with a relay”, Math. Notes, 114:2 (2023), 212–222 | DOI | Zbl
[47] V.V. Yevstafyeva, “On one type of oscillatory solutions of a nonautonomous system with relay hysteresis”, Math. Notes, 115:5 (2024), 734–747 | DOI | Zbl
[48] A.M. Kamachkin, D.K. Potapov, V.V. Yevstafyeva, “Two-point oscillatory solutions to system with relay hysteresis and nonperiodic external disturbance”, Appl. Math., Praha, 69:3 (2024), 395–414 | DOI | Zbl
[49] M. di Bernardo, C.J. Budd, A.R. Champneys, P. Kowalczyk, Piecewise-smooth dynamical systems. Theory and applications, Springer, New York, 2008 | Zbl
[50] M. Arnold, N. Begun, P. Gurevich, E. Kwame, H. Lamba, D. Rachinskii, “Dynamics of discrete time systems with a hysteresis stop operator”, SIAM J. Appl. Dyn. Syst., 16:1 (2017), 91–119 | DOI | Zbl
[51] R.A. Nelepin, Exact analytical methods in the theory of nonlinear automatic systems, Sudostroenie, L., 1967 | Zbl
[52] A.M. Kamachkin, V.N. Shamberov, “The decomposition method of research into the nonlinear dynamical systems' space of parameters”, Appl. Math. Sci., 9:81 (2015), 4009–4018 | DOI
[53] D. Rachinskii, “Realization of arbitrary hysteresis by a low-dimensional gradient flow”, Disc. Contin. Dyn. Syst. Ser. B, 21:1 (2016), 227–243 | DOI | Zbl