Spectrum of a linear problem about the MHD flows of a polymeric fluid in a cylindrical channel in case of an absolute conductivity (generalized Vinogradov-Pokrovski model)
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 823-851 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the linear stability of a resting state for flows of incompressible viscoelastic polymeric fluid under the influence of homogenous magnetic field in an infinite cylindrical channel in axisymmetric perturbation class. The tension vector of the magnetic field is parallel to the cylinder axis. We use structurally-phenomenological Vinogradov-Pokrovski model as our mathematical model. We formulate the equation that define the spectrum of the problem. Our numerical experiments show that with the growth of perturbations frequency along the channel axis there appear eigenvalues with positive real part for the radial velocity component of the first spectral equation. That guarantees linear Lyapunov instability of the resting state. However for large Reynolds and Weissenberg numbers the exponential growth rate of the amplitude for high frequencies can be suppressed to quite low values by increasing the magnetic pressure.
Keywords: incompressible viscoelastic polymeric medium, external homogenous magnetic field, rheological correlation, resting state, linearized mixed problem, Lyapunov stability.
@article{SEMR_2024_21_2_a35,
     author = {D. L. Tkachev and E. A. Biberdorf},
     title = {Spectrum of a linear problem about the {MHD} flows of a polymeric fluid in a cylindrical channel in case of an absolute conductivity (generalized {Vinogradov-Pokrovski} model)},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {823--851},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a35/}
}
TY  - JOUR
AU  - D. L. Tkachev
AU  - E. A. Biberdorf
TI  - Spectrum of a linear problem about the MHD flows of a polymeric fluid in a cylindrical channel in case of an absolute conductivity (generalized Vinogradov-Pokrovski model)
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 823
EP  - 851
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a35/
LA  - en
ID  - SEMR_2024_21_2_a35
ER  - 
%0 Journal Article
%A D. L. Tkachev
%A E. A. Biberdorf
%T Spectrum of a linear problem about the MHD flows of a polymeric fluid in a cylindrical channel in case of an absolute conductivity (generalized Vinogradov-Pokrovski model)
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 823-851
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a35/
%G en
%F SEMR_2024_21_2_a35
D. L. Tkachev; E. A. Biberdorf. Spectrum of a linear problem about the MHD flows of a polymeric fluid in a cylindrical channel in case of an absolute conductivity (generalized Vinogradov-Pokrovski model). Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 823-851. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a35/

[1] V.N. Pokrovskii, The mesoscopic theory of polymer dynamics, Springer Ser. Chem. Phys., 95, Springer, Dordrecht, 2010 | DOI

[2] Yu.A. Altukhov, A.S. Gusev, G.V. Pishnograi, Introduction into mesoscopic theory of flowing polymeric systems, Alt. GPA, Barnaul, 2012

[3] J.G. Oldroyd, “On the formulation of rheological equations of state”, Proc. R. Soc. Lond., Ser. A, 200 (1950), 523–541 | DOI | MR | Zbl

[4] R.B. Bird, P.J. Dotson, N.L. Johnson, “Polymer solution rheology based on a finitely extensible bead-spring chain model”, J. Non-Newtonian Fluid Mech., 7:2-3 (1980), 213–235 | DOI | Zbl

[5] M.D. Chilcott, J.M. Ralliston, “Creeping flow of dilute polymer solutions past cylinders and spheres”, J. Non-Newtonian Fluid Mech., 29 (1988), 381–432 | DOI | Zbl

[6] J. Remmelgas, G. Harrison, L.G. Leal, “A differential constitutive equation for entangled polymer solutions”, J. Non-Newtonian Fluid Mech., 80:2-3 (1999), 115–134 | DOI | Zbl

[7] V.N. Pokrovski, Statistical mechanics of dilute suspension, Nauka, M., 1978

[8] S.A. Zinovich, I.E. Golovicheva, G.V. Pyshnograi, “Influence of the molecular mass on shear and longitudinal viscosity of linear polymers”, J. Appl. Mech. Tech. Phys., 41:2 (2000), 347–352 | DOI | Zbl

[9] G. Pyshnograi, D. Merzlikina, P. Filip, R. Pivokonsky, “Mesoscopic single and multi-mode rheological models for polymeric melts viscometric flow description”, WSEAS transactions on heat and mass transfer, 13 (2018), 49–65

[10] A.M. Blokhin, D.L. Tkachev, “Linear asymptotic instability of a stationary flow of a polymeric medium in a plane channel in the case of periodic perturbations”, J. Appl. Ind. Math., 8:4 (2014), 467–478 | DOI | MR | Zbl

[11] A.M. Blokhin, A.V. Yegitov, D.L. Tkachev, “Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel”, Comput. Math. Math. Phys., 55:5 (2015), 848–873 | DOI | MR | Zbl

[12] Alexander Blokhin, Dmitry Tkachev, “Spectral asymptotics of a linearized problem about flow of an incompressible polymeric fluid. Base flow is analogue of a Poiseuille flow”, AIP Conf. Proc., 2027:1 (2018), 030028 | DOI

[13] A.M. Blokhin, D.L. Tkachev, “Analogue of the Poiseuille flow for incompressible polymeric fluid with volume charge. Asymptotics of the linearized problem spectrum”, J. Phys. Conf. Ser., 894 (2017), 012096 | DOI | MR

[14] A.M. Blokhin, A.V. Yegitov, D.L. Tkachev, “Asymptotics of the spectrum of a linearized problem of the stability of a stationary flow of an incompressible polymeric fluid with a space charge”, Comput. Math. Math. Phys., 58:1 (2018), 102–117 | DOI | MR | Zbl

[15] Alexander Blokhin, Dmitry Tkachev, Aleksey Yegitov, “Spectral asymptotics of a linearized problem for an incompressible weakly conducting polymeric fluid”, Z. Angrew. Math. Mech., 98:4 (2018), 589–601 | DOI | MR | Zbl

[16] A.M. Blokhin, D.L. Tkachev, “Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid”, J. Hyperbolic Differ. Equ., 16:4 (2019), 793–817 | DOI | MR | Zbl

[17] A.M. Blokhin, D.L. Tkachev, “Stability of the Poiseuille-type flow for a MHD model of an incompressible polymeric fluid”, Eur. J. Mech. B. Fluids, 80 (2020), 112–121 | DOI | MR | Zbl

[18] A.M. Blokhin D.L. Tkachev, “Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid”, Fluid Dyn., 54:8 (2019), 1051–1058 | DOI | MR | Zbl

[19] A.M. Blokhin, D.L. Tkachev, “Stability of Poiseuille-type flows in an MHD model of an incompressible polymeric fluid”, Sb. Math., 211:7 (2020), 901–921 | DOI | MR | Zbl

[20] A.M. Blokhin, D.L. Tkachev, “MHD model of incompressible polymeric fluid. Linear instability of the resting state”, Complex Var. Elliptic Equ., 66:6-7 (2021), 929–944 | DOI | MR | Zbl

[21] A.M. Blokhin, D. Tkachev, “Linear instability of the resting state for the MHD model of an incompressible polymeric fluid”, AIP Conf. Proc., 2351:1 (2021), 040057 | DOI | MR

[22] A.M. Blokhin, D.L. Tkachev, “On linearly unstable steady states of an MHD model of an incompressible polymeric fluid in the case of absolute conductivity”, Sib. Adv. Math., 32 (2022), 1–12 | DOI | MR

[23] A.M. Blokhin, A.Yu. Goldin, “Linear stability of an incompressible polymer liquid at rest”, J. Math. Sci., New York, 230:1 (2018), 14–24 | DOI | MR | Zbl

[24] D.L. Tkachev, “Spectrum and linear Lyapunov instability of a resting state for flows of an incompressible polymeric fluid”, J. Math. Anal. Appl., 522:1 (2023), 126914 | DOI | MR | Zbl

[25] D.L. Tkachev, “The spectrum and Lyapunov linear instability of the stationary state for polymer fluid flows: the Vinogradov-Pokrovski model”, Sib. Math. J., 64:2 (2023), 407–423 | DOI | MR | Zbl

[26] G.I. Taylor, “Stability of a viscous liquid contained between two rotating cylinders”, Lond. Phil. Trans. (A), 223 (1923), 289–343 | DOI | Zbl

[27] L.I. Sedov, Mechanics of continuous medium, v. 1, Nauka, M., 1970 | MR | Zbl

[28] L.G. Loitsyanskii, Mechanics of fluids and gas, Nauka, M., 1978 | MR

[29] D.L. Tkachev, E.A. Biberdorf, “Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model)”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1269–1283 http://semr.math.nsc.ru/v20/n2/p1269-1289.pdf | MR | Zbl

[30] J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations, Yale University Press, New Haven, 1923 | MR | Zbl

[31] S.K. Godunov, Equations of mathematical physics, 2nd ed., Nauka, M., 1979 | MR

[32] A.B. Vatazhin, G.A. Lyubimov, S.A. Regirer, Magnetohydrodynamic flows in channels, Nauka, M., 1970 | Zbl

[33] A.I. Akhiezer, I.A. Akhiezer, Electromagnetism and electromagnetic waves, Higher School, M., 1985

[34] C. Nordling, J. Osterman, Physics Handbook for Science and Engineering, Professional Publishing House, 2006

[35] L.D. Landau, E.M. Lifshitz, Electrodynamics of continuous mediums, Physmathlit, M., 1959 | MR | Zbl

[36] M. Abramowitz, I. Stegun, Handbook of mathematical functions, NBS, 1964 | MR

[37] P. Hartman, Ordinary differential equations, Second edition, Birkhäuser, Boston–Basel–Stuttgart, 1982 | MR | Zbl

[38] E.A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York-Toronto-London, 1955 | MR | Zbl

[39] F.R. Gantmaher, Matrix theory, 5th ed., Physmathlit, M., 2010 | MR | Zbl

[40] G.A. Korn, T.M. Korn, Mathematical handbook for scientists and engineers. Definitions, theorems and formulas for reference and review, 5th ed., Nauka, M., 1984 | MR | Zbl

[41] S.K. Godunov, V.T. Zhukov, O.B. Feodoritova, “A method for calculating invariant subspaces of symmetric hyperbolic equations”, Comput. Math. Math. Phys., 46:6 (2006), 971–982 | DOI | MR | Zbl

[42] Shih-I Pai, Introduction to the theory of compressible flow, D. Van Nostrand, New York, 1959 | MR | Zbl

[43] A.M. Blokhin, A.S. Rudometova, “Stationary flows of a weakly conducting incompressible polymeric liquid between coaxial cylinders”, J. Appl. Ind. Math., 11:4 (2017), 486–493 | DOI | MR | Zbl

[44] A.M. Blokhin, R.E. Semenko, A.S. Rudometova, “Magnetohydrodynamic vortex motion of an incompressible polymeric fluid”, J. Appl. Ind. Math., 15:1 (2021), 7–16 | DOI | MR | Zbl

[45] E. Kamke, Handbook on Ordinary Differential Equations, Nauka, M., 1976 | MR | Zbl

[46] L.N. Trefethen, Spectral methods in MATLAB, Software - Environments - Tools, 10, SIAM, Philadelphia, 2000 | MR | Zbl