@article{SEMR_2024_21_2_a35,
author = {D. L. Tkachev and E. A. Biberdorf},
title = {Spectrum of a linear problem about the {MHD} flows of a polymeric fluid in a cylindrical channel in case of an absolute conductivity (generalized {Vinogradov-Pokrovski} model)},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {823--851},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a35/}
}
TY - JOUR AU - D. L. Tkachev AU - E. A. Biberdorf TI - Spectrum of a linear problem about the MHD flows of a polymeric fluid in a cylindrical channel in case of an absolute conductivity (generalized Vinogradov-Pokrovski model) JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 823 EP - 851 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a35/ LA - en ID - SEMR_2024_21_2_a35 ER -
%0 Journal Article %A D. L. Tkachev %A E. A. Biberdorf %T Spectrum of a linear problem about the MHD flows of a polymeric fluid in a cylindrical channel in case of an absolute conductivity (generalized Vinogradov-Pokrovski model) %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 823-851 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a35/ %G en %F SEMR_2024_21_2_a35
D. L. Tkachev; E. A. Biberdorf. Spectrum of a linear problem about the MHD flows of a polymeric fluid in a cylindrical channel in case of an absolute conductivity (generalized Vinogradov-Pokrovski model). Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 823-851. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a35/
[1] V.N. Pokrovskii, The mesoscopic theory of polymer dynamics, Springer Ser. Chem. Phys., 95, Springer, Dordrecht, 2010 | DOI
[2] Yu.A. Altukhov, A.S. Gusev, G.V. Pishnograi, Introduction into mesoscopic theory of flowing polymeric systems, Alt. GPA, Barnaul, 2012
[3] J.G. Oldroyd, “On the formulation of rheological equations of state”, Proc. R. Soc. Lond., Ser. A, 200 (1950), 523–541 | DOI | MR | Zbl
[4] R.B. Bird, P.J. Dotson, N.L. Johnson, “Polymer solution rheology based on a finitely extensible bead-spring chain model”, J. Non-Newtonian Fluid Mech., 7:2-3 (1980), 213–235 | DOI | Zbl
[5] M.D. Chilcott, J.M. Ralliston, “Creeping flow of dilute polymer solutions past cylinders and spheres”, J. Non-Newtonian Fluid Mech., 29 (1988), 381–432 | DOI | Zbl
[6] J. Remmelgas, G. Harrison, L.G. Leal, “A differential constitutive equation for entangled polymer solutions”, J. Non-Newtonian Fluid Mech., 80:2-3 (1999), 115–134 | DOI | Zbl
[7] V.N. Pokrovski, Statistical mechanics of dilute suspension, Nauka, M., 1978
[8] S.A. Zinovich, I.E. Golovicheva, G.V. Pyshnograi, “Influence of the molecular mass on shear and longitudinal viscosity of linear polymers”, J. Appl. Mech. Tech. Phys., 41:2 (2000), 347–352 | DOI | Zbl
[9] G. Pyshnograi, D. Merzlikina, P. Filip, R. Pivokonsky, “Mesoscopic single and multi-mode rheological models for polymeric melts viscometric flow description”, WSEAS transactions on heat and mass transfer, 13 (2018), 49–65
[10] A.M. Blokhin, D.L. Tkachev, “Linear asymptotic instability of a stationary flow of a polymeric medium in a plane channel in the case of periodic perturbations”, J. Appl. Ind. Math., 8:4 (2014), 467–478 | DOI | MR | Zbl
[11] A.M. Blokhin, A.V. Yegitov, D.L. Tkachev, “Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel”, Comput. Math. Math. Phys., 55:5 (2015), 848–873 | DOI | MR | Zbl
[12] Alexander Blokhin, Dmitry Tkachev, “Spectral asymptotics of a linearized problem about flow of an incompressible polymeric fluid. Base flow is analogue of a Poiseuille flow”, AIP Conf. Proc., 2027:1 (2018), 030028 | DOI
[13] A.M. Blokhin, D.L. Tkachev, “Analogue of the Poiseuille flow for incompressible polymeric fluid with volume charge. Asymptotics of the linearized problem spectrum”, J. Phys. Conf. Ser., 894 (2017), 012096 | DOI | MR
[14] A.M. Blokhin, A.V. Yegitov, D.L. Tkachev, “Asymptotics of the spectrum of a linearized problem of the stability of a stationary flow of an incompressible polymeric fluid with a space charge”, Comput. Math. Math. Phys., 58:1 (2018), 102–117 | DOI | MR | Zbl
[15] Alexander Blokhin, Dmitry Tkachev, Aleksey Yegitov, “Spectral asymptotics of a linearized problem for an incompressible weakly conducting polymeric fluid”, Z. Angrew. Math. Mech., 98:4 (2018), 589–601 | DOI | MR | Zbl
[16] A.M. Blokhin, D.L. Tkachev, “Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid”, J. Hyperbolic Differ. Equ., 16:4 (2019), 793–817 | DOI | MR | Zbl
[17] A.M. Blokhin, D.L. Tkachev, “Stability of the Poiseuille-type flow for a MHD model of an incompressible polymeric fluid”, Eur. J. Mech. B. Fluids, 80 (2020), 112–121 | DOI | MR | Zbl
[18] A.M. Blokhin D.L. Tkachev, “Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid”, Fluid Dyn., 54:8 (2019), 1051–1058 | DOI | MR | Zbl
[19] A.M. Blokhin, D.L. Tkachev, “Stability of Poiseuille-type flows in an MHD model of an incompressible polymeric fluid”, Sb. Math., 211:7 (2020), 901–921 | DOI | MR | Zbl
[20] A.M. Blokhin, D.L. Tkachev, “MHD model of incompressible polymeric fluid. Linear instability of the resting state”, Complex Var. Elliptic Equ., 66:6-7 (2021), 929–944 | DOI | MR | Zbl
[21] A.M. Blokhin, D. Tkachev, “Linear instability of the resting state for the MHD model of an incompressible polymeric fluid”, AIP Conf. Proc., 2351:1 (2021), 040057 | DOI | MR
[22] A.M. Blokhin, D.L. Tkachev, “On linearly unstable steady states of an MHD model of an incompressible polymeric fluid in the case of absolute conductivity”, Sib. Adv. Math., 32 (2022), 1–12 | DOI | MR
[23] A.M. Blokhin, A.Yu. Goldin, “Linear stability of an incompressible polymer liquid at rest”, J. Math. Sci., New York, 230:1 (2018), 14–24 | DOI | MR | Zbl
[24] D.L. Tkachev, “Spectrum and linear Lyapunov instability of a resting state for flows of an incompressible polymeric fluid”, J. Math. Anal. Appl., 522:1 (2023), 126914 | DOI | MR | Zbl
[25] D.L. Tkachev, “The spectrum and Lyapunov linear instability of the stationary state for polymer fluid flows: the Vinogradov-Pokrovski model”, Sib. Math. J., 64:2 (2023), 407–423 | DOI | MR | Zbl
[26] G.I. Taylor, “Stability of a viscous liquid contained between two rotating cylinders”, Lond. Phil. Trans. (A), 223 (1923), 289–343 | DOI | Zbl
[27] L.I. Sedov, Mechanics of continuous medium, v. 1, Nauka, M., 1970 | MR | Zbl
[28] L.G. Loitsyanskii, Mechanics of fluids and gas, Nauka, M., 1978 | MR
[29] D.L. Tkachev, E.A. Biberdorf, “Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model)”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1269–1283 http://semr.math.nsc.ru/v20/n2/p1269-1289.pdf | MR | Zbl
[30] J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations, Yale University Press, New Haven, 1923 | MR | Zbl
[31] S.K. Godunov, Equations of mathematical physics, 2nd ed., Nauka, M., 1979 | MR
[32] A.B. Vatazhin, G.A. Lyubimov, S.A. Regirer, Magnetohydrodynamic flows in channels, Nauka, M., 1970 | Zbl
[33] A.I. Akhiezer, I.A. Akhiezer, Electromagnetism and electromagnetic waves, Higher School, M., 1985
[34] C. Nordling, J. Osterman, Physics Handbook for Science and Engineering, Professional Publishing House, 2006
[35] L.D. Landau, E.M. Lifshitz, Electrodynamics of continuous mediums, Physmathlit, M., 1959 | MR | Zbl
[36] M. Abramowitz, I. Stegun, Handbook of mathematical functions, NBS, 1964 | MR
[37] P. Hartman, Ordinary differential equations, Second edition, Birkhäuser, Boston–Basel–Stuttgart, 1982 | MR | Zbl
[38] E.A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York-Toronto-London, 1955 | MR | Zbl
[39] F.R. Gantmaher, Matrix theory, 5th ed., Physmathlit, M., 2010 | MR | Zbl
[40] G.A. Korn, T.M. Korn, Mathematical handbook for scientists and engineers. Definitions, theorems and formulas for reference and review, 5th ed., Nauka, M., 1984 | MR | Zbl
[41] S.K. Godunov, V.T. Zhukov, O.B. Feodoritova, “A method for calculating invariant subspaces of symmetric hyperbolic equations”, Comput. Math. Math. Phys., 46:6 (2006), 971–982 | DOI | MR | Zbl
[42] Shih-I Pai, Introduction to the theory of compressible flow, D. Van Nostrand, New York, 1959 | MR | Zbl
[43] A.M. Blokhin, A.S. Rudometova, “Stationary flows of a weakly conducting incompressible polymeric liquid between coaxial cylinders”, J. Appl. Ind. Math., 11:4 (2017), 486–493 | DOI | MR | Zbl
[44] A.M. Blokhin, R.E. Semenko, A.S. Rudometova, “Magnetohydrodynamic vortex motion of an incompressible polymeric fluid”, J. Appl. Ind. Math., 15:1 (2021), 7–16 | DOI | MR | Zbl
[45] E. Kamke, Handbook on Ordinary Differential Equations, Nauka, M., 1976 | MR | Zbl
[46] L.N. Trefethen, Spectral methods in MATLAB, Software - Environments - Tools, 10, SIAM, Philadelphia, 2000 | MR | Zbl