Multistability and dynamic scenarios in the prey–predator–superpredator model
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 771-788 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In mathematical models of population dynamics, the appearance of a continuum of solutions is a rare situation. We analyze a multistability in the system of differential equations describing the prey-predator-superpredator dynamics. The cosymmetric approach is applied to derive a continuous family of equilibria for Beddington-DeAngelis functional response. The case of multistability was detected analytically and the destruction of the family of equilibria was studied. Our results exhibit memory of the disappeared family of equilibria and its impact on dynamic scenarios. Two-parameter bifurcation diagrams were built numerically for cosymmetric and general cases.
Keywords: mathematical ecology, prey–predator–superpredator, differential equations, cosymmetry, multistability.
@article{SEMR_2024_21_2_a34,
     author = {Ahmad Almasri and V. G. Tsybulin},
     title = {Multistability and dynamic scenarios in the prey{\textendash}predator{\textendash}superpredator model},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {771--788},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a34/}
}
TY  - JOUR
AU  - Ahmad Almasri
AU  - V. G. Tsybulin
TI  - Multistability and dynamic scenarios in the prey–predator–superpredator model
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 771
EP  - 788
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a34/
LA  - en
ID  - SEMR_2024_21_2_a34
ER  - 
%0 Journal Article
%A Ahmad Almasri
%A V. G. Tsybulin
%T Multistability and dynamic scenarios in the prey–predator–superpredator model
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 771-788
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a34/
%G en
%F SEMR_2024_21_2_a34
Ahmad Almasri; V. G. Tsybulin. Multistability and dynamic scenarios in the prey–predator–superpredator model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 771-788. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a34/

[1] A.D. Bazykin, Nonlinear dynamics of interacting populations, World Scientific, River Edge, 1998 | DOI | MR

[2] W. Mbava, J. Mugisha, J. Gonsalves, “Prey, predator and super-predator model with disease in the super-predator”, J. Appl. Math. Comput., 297 (2017), 92–114 | DOI | MR | Zbl

[3] D. Sen, S. Ghorai, M. Banerjee, “Complex dynamics of a three species prey-predator model with intraguild predation”, Ecol. Complex, 34 (2018), 9–22 | DOI

[4] P.R. Chowdhury, S. Petrovskii, M. Banerjee, “Coexistence of chaotic and non-chaotic attractors in a three-species slow-fast system”, Chaos Solitons Fract., 167 (2023), 113015 | DOI | MR

[5] T. Zeng, Z. Teng, Z. Li, J. Hu, “Stability in the mean of a stochastic three species food chain model with general Lévy jumps”, Chaos Solitons Fract., 106 (2018), 258–265 | DOI | MR | Zbl

[6] C. Huang, Y. Qiao, L. Huang, R. Agarwal, “Dynamical behaviors of a food-chain model with stage structure and time delays”, Adv. Difference Equ., 2018 (2018), 186 | DOI | MR | Zbl

[7] A. Jana, S.K. Roy, “Fostering roles of super predator in a three-species food chain”, Intern. J. Dynamics Control, 11 (2023), 78–93 | DOI | MR

[8] T. Namba, Y. Takeuchi, M. Banerjee, “Stabilizing effect of intra-specific competition on prey-predator dynamics with intraguild predation”, Math. Model. Nat. Phenom., 13:3 (2018), 29 | DOI | MR | Zbl

[9] M. Krishnadas, P.P. Saratchandran, K.P. Harikrishnan, “Chaos in a cyclic three-species predator-prey system with a partial consumption of superpredator”, Pramana - J. Phys., 94 (2020), 75 | DOI

[10] G. Blé, V. Castellanos, I.L. Hernández, “Stable limit cycles in an intraguild predation model with general functional responses”, Math. Methods Appl. Sci., 45:4 (2022), 2219–2233 | DOI | MR | Zbl

[11] Z. Wang, A. Bayliss, V.A. Volpert, “Competing alliances in a four-species cyclic ecosystem”, Appl. Math. Comput., 464 (2024), 128396 | DOI | MR | Zbl

[12] H.-C. Wei, “A mathematical model of intraguild predation with prey switching”, Math. Comput. Simul., 165 (2019), 107–118 | DOI | MR | Zbl

[13] J. Ji, L. Wang, “Competitive exclusion and coexistence in an intraguild predation model with Beddington-DeAngelis functional response”, Commun. Nonlinear Sci. Numer. Simul., 107 (2022), 106192 | DOI | MR | Zbl

[14] A.N. Pisarchik, U. Feudel, “Control of multistability”, Phys. Rep., 540:4 (2014), 167–218 | DOI | MR | Zbl

[15] I. Bashkirtseva, A.N. Pisarchik, L. Ryashko, “Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse”, Commun. Nonlinear Sci. Numer. Simul., 125 (2023), 107383 | DOI | MR | Zbl

[16] D.T. Ha, V.G. Tsybulin, “Multi-stable scenarios for differential equations describing the dynamics of a predators and preys system”, Computer Research and Modeling, 12:6 (2020), 1451–1466 | DOI

[17] A. Almasri, V.G. Tsybulin, “A dynamic analysis of a prey-predator-superpredator system: a family of equilibria and its destruction”, Computer Research and Modeling, 15:6 (2023), 1603–1617 | DOI | MR

[18] V.I. Yudovich, “Cosymmetry, degeneration of solutions of operator equations, and origin of a filtration convection”, Math. Notes, 49:5 (1991), 540–545 | DOI | MR | Zbl

[19] V.I. Yudovich, “Bifurcations under perturbations violating cosymmetry”, Dokl. Phys., 49 (2004), 522–526 | DOI | MR

[20] J.R. Beddington, “Mutual interference between parasites or predators and its effect on searching efficiency”, J. Animal Ecology, 44:1 (1975), 331–340 | DOI

[21] D.L. DeAngelis, R.A. Goldstein, R.V. O'Neill, “A model for trophic interaction”, Ecology, 56:4 (1975), 881–892 | DOI

[22] R.D. Holt, G.A. Polis, “A theoretical framework for intraguild predation”, Am. Naturalist, 149:4 (1997), 745–764 | DOI

[23] N.K. Thakur, A. Ojha, D. Jana, R.K. Upadhyay, “Modeling the plankton-fish dynamics with top predator interference and multiple gestation delays”, Nonlinear Dyn., 100:4 (2020), 4003–4029 | DOI | Zbl

[24] D.J. McCauley, G. Gellner, N.D. Martinez, R.J. Williams, S.A. Sandin, F. Micheli, P.J. Mumby, K.S. McCann, “On the prevalence and dynamics of inverted trophic pyramids and otherwise top-heavy communities”, Ecology Letters, 21:3 (2018), 439–454 | DOI

[25] J. Vandermeer, “Omnivory and the stability of food webs”, J. Theor. Biol., 238:3 (2006), 497–504 | DOI | MR | Zbl

[26] E. Giricheva, “Taxis-driven pattern formation in tri-trophic food chain model with omnivory”, Mathematics, 12:2 (2024), 290 | DOI

[27] T.D. Ha, V.G. Tsybulin, “Multistability for a mathematical model of the dynamics of predators and preys in a heterogeneous area”, J. Math. Sci., New York, 282:3 (2024), 417–428 | DOI | MR | Zbl