@article{SEMR_2024_21_2_a34,
author = {Ahmad Almasri and V. G. Tsybulin},
title = {Multistability and dynamic scenarios in the prey{\textendash}predator{\textendash}superpredator model},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {771--788},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a34/}
}
TY - JOUR AU - Ahmad Almasri AU - V. G. Tsybulin TI - Multistability and dynamic scenarios in the prey–predator–superpredator model JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 771 EP - 788 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a34/ LA - en ID - SEMR_2024_21_2_a34 ER -
Ahmad Almasri; V. G. Tsybulin. Multistability and dynamic scenarios in the prey–predator–superpredator model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 771-788. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a34/
[1] A.D. Bazykin, Nonlinear dynamics of interacting populations, World Scientific, River Edge, 1998 | DOI | MR
[2] W. Mbava, J. Mugisha, J. Gonsalves, “Prey, predator and super-predator model with disease in the super-predator”, J. Appl. Math. Comput., 297 (2017), 92–114 | DOI | MR | Zbl
[3] D. Sen, S. Ghorai, M. Banerjee, “Complex dynamics of a three species prey-predator model with intraguild predation”, Ecol. Complex, 34 (2018), 9–22 | DOI
[4] P.R. Chowdhury, S. Petrovskii, M. Banerjee, “Coexistence of chaotic and non-chaotic attractors in a three-species slow-fast system”, Chaos Solitons Fract., 167 (2023), 113015 | DOI | MR
[5] T. Zeng, Z. Teng, Z. Li, J. Hu, “Stability in the mean of a stochastic three species food chain model with general Lévy jumps”, Chaos Solitons Fract., 106 (2018), 258–265 | DOI | MR | Zbl
[6] C. Huang, Y. Qiao, L. Huang, R. Agarwal, “Dynamical behaviors of a food-chain model with stage structure and time delays”, Adv. Difference Equ., 2018 (2018), 186 | DOI | MR | Zbl
[7] A. Jana, S.K. Roy, “Fostering roles of super predator in a three-species food chain”, Intern. J. Dynamics Control, 11 (2023), 78–93 | DOI | MR
[8] T. Namba, Y. Takeuchi, M. Banerjee, “Stabilizing effect of intra-specific competition on prey-predator dynamics with intraguild predation”, Math. Model. Nat. Phenom., 13:3 (2018), 29 | DOI | MR | Zbl
[9] M. Krishnadas, P.P. Saratchandran, K.P. Harikrishnan, “Chaos in a cyclic three-species predator-prey system with a partial consumption of superpredator”, Pramana - J. Phys., 94 (2020), 75 | DOI
[10] G. Blé, V. Castellanos, I.L. Hernández, “Stable limit cycles in an intraguild predation model with general functional responses”, Math. Methods Appl. Sci., 45:4 (2022), 2219–2233 | DOI | MR | Zbl
[11] Z. Wang, A. Bayliss, V.A. Volpert, “Competing alliances in a four-species cyclic ecosystem”, Appl. Math. Comput., 464 (2024), 128396 | DOI | MR | Zbl
[12] H.-C. Wei, “A mathematical model of intraguild predation with prey switching”, Math. Comput. Simul., 165 (2019), 107–118 | DOI | MR | Zbl
[13] J. Ji, L. Wang, “Competitive exclusion and coexistence in an intraguild predation model with Beddington-DeAngelis functional response”, Commun. Nonlinear Sci. Numer. Simul., 107 (2022), 106192 | DOI | MR | Zbl
[14] A.N. Pisarchik, U. Feudel, “Control of multistability”, Phys. Rep., 540:4 (2014), 167–218 | DOI | MR | Zbl
[15] I. Bashkirtseva, A.N. Pisarchik, L. Ryashko, “Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse”, Commun. Nonlinear Sci. Numer. Simul., 125 (2023), 107383 | DOI | MR | Zbl
[16] D.T. Ha, V.G. Tsybulin, “Multi-stable scenarios for differential equations describing the dynamics of a predators and preys system”, Computer Research and Modeling, 12:6 (2020), 1451–1466 | DOI
[17] A. Almasri, V.G. Tsybulin, “A dynamic analysis of a prey-predator-superpredator system: a family of equilibria and its destruction”, Computer Research and Modeling, 15:6 (2023), 1603–1617 | DOI | MR
[18] V.I. Yudovich, “Cosymmetry, degeneration of solutions of operator equations, and origin of a filtration convection”, Math. Notes, 49:5 (1991), 540–545 | DOI | MR | Zbl
[19] V.I. Yudovich, “Bifurcations under perturbations violating cosymmetry”, Dokl. Phys., 49 (2004), 522–526 | DOI | MR
[20] J.R. Beddington, “Mutual interference between parasites or predators and its effect on searching efficiency”, J. Animal Ecology, 44:1 (1975), 331–340 | DOI
[21] D.L. DeAngelis, R.A. Goldstein, R.V. O'Neill, “A model for trophic interaction”, Ecology, 56:4 (1975), 881–892 | DOI
[22] R.D. Holt, G.A. Polis, “A theoretical framework for intraguild predation”, Am. Naturalist, 149:4 (1997), 745–764 | DOI
[23] N.K. Thakur, A. Ojha, D. Jana, R.K. Upadhyay, “Modeling the plankton-fish dynamics with top predator interference and multiple gestation delays”, Nonlinear Dyn., 100:4 (2020), 4003–4029 | DOI | Zbl
[24] D.J. McCauley, G. Gellner, N.D. Martinez, R.J. Williams, S.A. Sandin, F. Micheli, P.J. Mumby, K.S. McCann, “On the prevalence and dynamics of inverted trophic pyramids and otherwise top-heavy communities”, Ecology Letters, 21:3 (2018), 439–454 | DOI
[25] J. Vandermeer, “Omnivory and the stability of food webs”, J. Theor. Biol., 238:3 (2006), 497–504 | DOI | MR | Zbl
[26] E. Giricheva, “Taxis-driven pattern formation in tri-trophic food chain model with omnivory”, Mathematics, 12:2 (2024), 290 | DOI
[27] T.D. Ha, V.G. Tsybulin, “Multistability for a mathematical model of the dynamics of predators and preys in a heterogeneous area”, J. Math. Sci., New York, 282:3 (2024), 417–428 | DOI | MR | Zbl