Equilibrium problem for a Kirchhoff-Love plate contacting with the lateral surface along a strip of a given width
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 729-740 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new model of a Kirchhoff-Love plate is justified, which may come into contact by its lateral surface with a non-deformable obstacle along a strip of a given width. The non-deformable obstacle restricts displacements of the plate along the outer lateral surface. The obstacle is specified by a cylindrical surface, the generatrices of which are perpendicular to the midplane of the plate. A problem is formulated in variational form. A set of admissible displacements is determined in a suitable Sobolev space in the framework of a clamping condition and a non-penetration condition of the Signorini type. The non-penetration condition is given as a system of two inequalities. The existence and uniqueness of a solution to the problem is proven. An equivalent differential formulation and optimality conditions are found under the assumption of additional regularity of the solution to the variational problem. A qualitative connection has been established between the proposed model and a previously studied problem in which the plate is in contact over the entire lateral surface.
Keywords: contact problem, variational inequality, nonpenetration condition.
Mots-clés : limit passage
@article{SEMR_2024_21_2_a33,
     author = {N. P. Lazarev and D. Y. Nikiforov and G. M. Semenova},
     title = {Equilibrium problem for a {Kirchhoff-Love} plate contacting with the lateral surface along a strip of a given width},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {729--740},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a33/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - D. Y. Nikiforov
AU  - G. M. Semenova
TI  - Equilibrium problem for a Kirchhoff-Love plate contacting with the lateral surface along a strip of a given width
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 729
EP  - 740
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a33/
LA  - ru
ID  - SEMR_2024_21_2_a33
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A D. Y. Nikiforov
%A G. M. Semenova
%T Equilibrium problem for a Kirchhoff-Love plate contacting with the lateral surface along a strip of a given width
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 729-740
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a33/
%G ru
%F SEMR_2024_21_2_a33
N. P. Lazarev; D. Y. Nikiforov; G. M. Semenova. Equilibrium problem for a Kirchhoff-Love plate contacting with the lateral surface along a strip of a given width. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 729-740. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a33/

[1] A. Signorini, “Questioni di elasticità non linearizzata e semilinearizzata”, Rend. Mat. Appl., V. Ser., 18 (1959), 95–139 | MR | Zbl

[2] G. Fichera, “Boundary Value Problems of Elasticity with Unilateral Constraints”, Handbook der Physik, v. VIa/2, ed. Flügge S., Springer-Verlag, Berlin- Heidelberg-New York, 1972 | Zbl

[3] G. Dal Maso, G. Paderni, “Variational inequalities for the biharmonic operator with variable obstacles”, Ann. Mat. Pura Appl., IV. Ser., 153 (1988), 203–227 | DOI | MR | Zbl

[4] A. Rademacher, K. Rosin, “Adaptive optimal control of Signorini's problem”, Comput. Optim. Appl., 70:2 (2018), 531–569 | DOI | MR | Zbl

[5] A.M. Khludnev, V.A. Kovtunenko, Analysis of cracks in solids, WIT-Press, Southampton–Boston, 2000

[6] N. Lazarev, E. Rudoy, “Optimal location of a finite set of rigid inclusions in contact problems for inhomogeneous two-dimensional bodies”, J. Comput. Appl. Math., 403 (2022), 113710 | DOI | MR | Zbl

[7] N.P. Lazarev, E.F. Sharin, E.S. Efimova, “Equilibrium problem for an inhomogeneous Kirchhoff-Love plate contacting with a partially delaminated inclusion”, Lobachevskii J. Math., 44:10 (2023), 4127–4134 | DOI | MR | Zbl

[8] A.I. Furtsev, “On contact between a thin obstacle and a plate containing a thin inclusion”, J. Math.Sci., New York, 237:4 (2019), 530–545 | DOI | MR | Zbl

[9] A.I. Furtsev, “The unilateral contact problem for a Timoshenko plate and a thin elastic obstacle”, Sib. Èlectron. Mat. Izv., 17 (2020), 364–379 | DOI | MR | Zbl

[10] E.V. Pyatkina, “A Contact of two elastic plates connected along a thin rigid inclusion”, Sib. Èlectron. Mat. Izv., 17 (2020), 1797–1815 | DOI | MR | Zbl

[11] A.M. Khludnev, K. Hoffmann, N.D. Botkin, “The variational contact problem for elastic objects of different dimensions”, Sib. Math. J., 47:3 (2006), 584–593 | DOI | MR | Zbl

[12] P. Piersanti, “On the improved interior regularity of the solution of a fourth order elliptic problem modelling the displacement of a linearly elastic shallow shell lying subject to an obstacle”, Asymptotic Anal., 127:1-2 (2022), 35–55 https://hal.science/hal-02613183v2 | DOI | MR | Zbl

[13] P. Piersanti, “On the improved interior regularity of a boundary value problem modelling the displacement of a linearly elastic elliptic membrane shell subject to an obstacle”, Discrete Contin. Dyn. Syst., 42:2 (2022), 1011–1037 | DOI | MR

[14] A.G. Grimaldi, “Regularity results for solutions to a class of obstacle problems”, Nonlinear Anal., Real World Appl., 62 (2021), 103377 | DOI | MR | Zbl

[15] P.G. Ciarlet, C. Mardare, P. Piersanti, “An obstacle problem for elliptic membrane shells”, Math. Mech. Solids, 24:5 (2019), 1503–1529 | DOI | MR | Zbl

[16] N.P. Lazarev, V.A. Kovtunenko, “Asymptotic analysis of the problem of equilibrium of an inhomogeneous body with hinged rigid inclusions of various widths”, J. Appl. Mech. Tech. Phys., 64:5 (2023), 911–920 | DOI | MR | Zbl

[17] P. Piersanti, “Asymptotic analysis of linearly elastic flexural shells subjected to an obstacle in absence of friction”, J. Nonlinear Sci., 33:4 (2023), 58 | DOI | MR | Zbl

[18] D. Knees, A. Schröder, “Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints”, Math. Methods Appl. Sci., 35:15 (2012), 1859–1884 | DOI | MR | Zbl

[19] A.I. Furtsev, “Problem of equilibrium for hyperelastic body with rigid inclusion and non-penetrating crack”, Sib. Èlectron. Math. Izv., 21:1 (2024), 17–40 http://semr.math.nsc.ru/v21/n1/p0017-0040.pdf | MR

[20] V.A. Kovtunenko, “Poroelastic medium with non-penetrating crack driven by hydraulic fracture: Variational inequality and its semidiscretization”, J. Comput. Appl. Math., 405 (2022), 113953 | DOI | MR | Zbl

[21] V.A. Kovtunenko, H. Itou, A.M. Khludnev, E.M. Rudoy, “Non-smooth variational problems and applications”, Phil. Trans. R. Soc. A, 380 (2022), 20210364 | DOI | MR

[22] V. Shcherbakov, “Shape derivatives of energy and regularity of minimizers for shallow elastic shells with cohesive cracks”, Nonlinear Anal., Real World Appl., 65 (2022), 103505 | DOI | MR | Zbl

[23] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, “Nonlinear elasticity with limiting small strain for cracks subject to non-penetration”, Math. Mech. Solids, 22:6 (2017), 1334–1346 | DOI | MR | Zbl

[24] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, “Well-posedness of the problem of non-penetrating cracks in elastic bodies whose material moduli depend on the mean normal stress”, Int. J. Eng. Sci., 136 (2019), 17–25 | DOI | MR | Zbl

[25] A. Furtsev, H. Itou, E. Rudoy, “Modeling of bonded elastic structures by a variational method: Theoretical Analysis and Numerical Simulation”, Int. J. Solids Struct., 182-183 (2020), 100–111 | DOI

[26] E.M. Rudoy, V.V. Shcherbakov, “Domain decomposition method for a membrane with a delaminated thin rigid inclusion”, Sib. Èlectron. Math. Izv., 13 (2016), 395–410 | DOI | MR | Zbl

[27] V.D. Stepanov, A.M. Khludnev, “The method of fictitious domains in the Signorini problem”, Sib. Math. J., 44:6 (2003), 1061–1074 | DOI | MR | Zbl

[28] N.A. Nikolaeva, “Method of fictitious domains for Signorini's problem in Kirchhoff–Love theory of plates”, J. Math. Sci., 221:6 (2017), 872–882 | DOI | MR

[29] N.P. Lazarev, H. Itou, N.V. Neustroeva, “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Japan J. Ind. Appl. Math., 33:1 (2016), 63–80 | DOI | MR | Zbl

[30] N.P. Lazarev, V.V. Everstov, N.A. Romanova, “Fictitious domain method for equilibrium problems of the Kirchhoff-Love plates with nonpenetration conditions for known configurations of plate edges”, J. Sib. Fed. Univ. Math. Phys., 12:6 (2019), 674–686 https://elib.sfu-kras.ru/handle/2311/127023 | DOI | MR | Zbl

[31] N.P. Lazarev, G.M. Semenova, E.D. Fedotov, “An equilibrium problem for a Kirchhoff-Love plate, contacting an obstacle by top and bottom edges”, Lobachevskii J. Math., 44:2 (2023), 614–619 | DOI | MR | Zbl

[32] N.P. Lazarev, D.Y. Nikiforov, N.A. Romanova, “Equilibrium problem for a Timoshenko plate contacting by the side and face surfaces”, Chelyabinskiĭ Fiz.-Mat. Zh., 8:4 (2023), 528–541 | DOI | MR | Zbl

[33] N.P. Lazarev, V.A. Kovtunenko, “Signorini-type problems over non-convex sets for composite bodies contacting by sharp edges of rigid inclusions”, Mathematics, 10:2 (2022), 250 | DOI | MR

[34] N.P. Lazarev, E.D. Fedotov, “Three-dimensional Signorini-type problem for composite bodies contacting with sharp edges of rigid inclusions”, Chelyabinskiĭ Fiz.-Mat. Zh., 7:4 (2022), 412–423 | DOI | MR | Zbl

[35] N.P. Lazarev, “Fictitious domain method in the equilibrium problem for a Timoshenko-type plate contacting with a rigid obstacle”, J. Math. Sci., 203:4 (2014), 527–539 | DOI | MR

[36] C. Baiocchi, A. Capello, Variational and quasivariational inequalities. Applications to free boundary problems, Wiley, New York, 1984 | MR | Zbl

[37] E.M. Rudoy, H. Itou, N.P. Lazarev, “Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem”, J. Appl. Ind. Math., 15:1 (2021), 129–140 | DOI | MR | Zbl

[38] E. Rudoy, S. Sazhenkov, “Variational approach to modeling of curvilinear thin inclusions with rough boundaries in elastic bodies: case of a rod-type inclusion”, Mathematics, 11:16 (2023), 3447 | DOI

[39] I.V. Fankina, A.I. Furtsev, E.M. Rudoy, S.A. Sazhenkov, “A quasi-static model of a thermoelastic body reinforced by a thin thermoelastic inclusion”, Math. Mech. Solids, 29:4 (2024), 796–817 | DOI | MR

[40] I.V. Fankina, A.I. Furtsev, E.M. Rudoy, S.A. Sazhenkov, “The homogenized quasi-static model of a thermoelastic composite stitched with reinforcing threads”, J. Comput. Appl. Math., 434 (2023), 115346 | DOI | MR | Zbl

[41] N.P. Lazarev, N.A. Romanova, “Optimal control of the angle between two rigid inclusions in an inhomogeneous 2D body”, Mat. Zamet. SVFU, 30:3 (2023), 38–57 https://mzsvfu.ru/index.php/mz/article/view/463 | Zbl

[42] V.A. Kovtunenko, K. Kunisch, “Shape derivative for penalty-constrained nonsmooth-nonconvex optimization: cohesive crack problem”, J. Optim. Theory Appl., 194:2 (2022), 597–635 | DOI | MR | Zbl

[43] A.M. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl