Mots-clés : semi-implicit Euler scheme
@article{SEMR_2024_21_2_a32,
author = {N. V. Pertsev and K. K. Loginov},
title = {Numerical modeling of the epidemic process taking into account time- and place-local contacts of individuals},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {702--728},
year = {2024},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a32/}
}
TY - JOUR AU - N. V. Pertsev AU - K. K. Loginov TI - Numerical modeling of the epidemic process taking into account time- and place-local contacts of individuals JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 702 EP - 728 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a32/ LA - ru ID - SEMR_2024_21_2_a32 ER -
%0 Journal Article %A N. V. Pertsev %A K. K. Loginov %T Numerical modeling of the epidemic process taking into account time- and place-local contacts of individuals %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 702-728 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a32/ %G ru %F SEMR_2024_21_2_a32
N. V. Pertsev; K. K. Loginov. Numerical modeling of the epidemic process taking into account time- and place-local contacts of individuals. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 702-728. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a32/
[1] K.L. Cooke, P. van den Driessche, “Analysis of an SEIRS epidemic model with two delays”, J. Math. Biol., 35:2 (1996), 240–260 | DOI | MR | Zbl
[2] E. Beretta, T. Hara, W. Ma, Y. Takeuchi, “Global asymptotic stability of an SIR epidemic model with distributed time delay”, Nonlinear Anal., Theory Methods Appl., 47:6 (2001), 4107–4115 | DOI | MR | Zbl
[3] M.L. Taylor, T.W. Carr, “An SIR epidemic model with partial temporary immunity modeled with delay”, J. Math. Biol., 59:6 (2009), 841–880 | DOI | MR | Zbl
[4] G. Huang, Y. Takeuchi, “Global analysis on delay epidemiological dynamic models with nonlinear incidence”, J. Math. Biol., 63:1 (2011), 125–139 | DOI | MR | Zbl
[5] N.V. Pertsev, B.Yu. Pichugin, A.N. Pichugina, “Analysis of the asymptotic behavior solutions of some models of epidemic processes”, Math. Biol. Bioinf., 8:1 (2013), 21–48 | DOI
[6] Y. Yuan, J. Bélair, “Threshold dynamics in an SEIRS model with latency and temporary immunity”, J. Math. Biol., 69:4 (2014), 875–904 | DOI | MR | Zbl
[7] M.V. Barbarossa, G. Röst, “Immuno-epidemiology of a population structured by immune status: a mathematical study of waning immunity and immune system boosting”, J. Math. Biol., 71:6-7 (2015), 1737–1770 | DOI | MR | Zbl
[8] D. Okuonghae, “A note on some qualitative properties of a tuberculosis differential equation model with a time delay”, Differ. Equ. Dyn. Syst., 23:2 (2015), 181–194 | DOI | MR | Zbl
[9] N.V. Pertsev, K.K. Loginov, V.A. Topchii, “Analysis of an epidemic mathematical model based on delay differential equations”, J. Appl. Ind. Math., 14:2 (2020), 396–406 | DOI | MR | Zbl
[10] O.I. Krivorot'ko, S.I. Kabanikhin, N.Y. Zyat'kov et al., “Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk region”, Numer. Analys. Appl., 13 (2020), 332–348 | DOI | MR
[11] U. Nguemdjo, F. Meno, A. Dongfack, B. Ventelou, “Simulating the progression of the COVID-19 disease in Cameroon using SIR models”, PLoS ONE, 15:8 (2020), e0237832 | DOI
[12] S.P. Levashkin, S.N. Agapov, O.I. Zakharova et al., “Study of SEIRD adaptive-compartmental model of COVID-19 epidemic spread in Russian Federation using optimization methods”, Math. Biol. Bioinf., 16:1 (2021), 136–151 | DOI
[13] S.I. Vinitsky, A.A. Gusev, V.L. Derbov et al., “Reduced SIR model of COVID-19 pandemic”, Comput. Math. Math. Phys., 61:3 (2021), 376–387 | DOI | MR | Zbl
[14] A. Boranbaev, N. Obrosova, A. Shananin, “Nonlinear input-output balance and young duality: analysis of COVID-19 macroeconomic impact on Kazakhstan”, Sib. Èlectron. Mat. Izv., 19:2 (2022), 835–851 http://semr.math.nsc.ru/v19/n2/p835-851.pdf | MR
[15] O.I. Krivorotko, S.I. Kabanikhin, “On mathematical models of COVID-19 pandemic”, Sib. Èlectron. Mat. Izv., 20:2 (2023), 1211–1268 http://semr.math.nsc.ru/v20/n2/p1211-1268.pdf | MR | Zbl
[16] N.V. Pertsev, “Global solvability and estimates of solutions to the Cauchy problem for the retarded functional differential equations that are used to model living systems”, Sib. Math. J., 59:1 (2018), 113–125 | DOI | MR | Zbl
[17] L.E. El'sgol'ts, S.B. Norkin, Introduction to the theory of differential equations with deviating argument, Nauka, M., 1971 | MR | Zbl
[18] F.R. Gantmakher, Matrix theory, Nauka, M., 1966 | MR | Zbl
[19] N.V. Pertsev, “Stability of linear delay differential equations arising in models of living systems”, Sib. Adv. Math., 30:1 (2020), 43–54 | DOI | MR
[20] A.Y. Aleksandrov, “Construction of the Lyapunov-Krasovskii functionals for some classes of positive delay systems”, Sib. Math. J., 59:5 (2018), 753–762 | DOI | MR | Zbl
[21] G.I. Marchuk, Mathematical models in immunology. Computational methods and experiments, Nauka, M., 1991 | MR | Zbl
[22] G.A. Bocharov, G.I. Marchuk, “Applied problems of mathematical modeling in immunology”, Comput. Math. Math. Phys., 40:12 (2000), 1830–1844 | MR | Zbl