Numerical modeling of the epidemic process taking into account time- and place-local contacts of individuals
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 702-728 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A modification of SEIRS model of the epidemic process taking into account time- and place-local contacts of individuals is developed. The model on the base of a high-dimensional system of differential equations with two delays, supplemented with initial data, is constructed. The correctness of model is studied. Conditions for the asymptotic stability of the trivial equilibrium state, which reflects the solution of the model in which there is no infection, is established. An expression for the infection spread coefficient is obtained. To solve the model numerically, a semi-implicit Euler scheme is used. The results of computational experiments with the model are presented. The significant influence of the heterogeneity of cohorts of susceptible and infectious individuals on the dynamics of the epidemic process is shown. The results of fitting solutions to the original high-dimensional model using its simpler modification are presented.
Keywords: epidemiology, SEIRS model, infection spread coefficient, differential equations with delay, asymptotic stability, computational experiment.
Mots-clés : semi-implicit Euler scheme
@article{SEMR_2024_21_2_a32,
     author = {N. V. Pertsev and K. K. Loginov},
     title = {Numerical modeling of the epidemic process taking into account time- and place-local contacts of individuals},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {702--728},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a32/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - K. K. Loginov
TI  - Numerical modeling of the epidemic process taking into account time- and place-local contacts of individuals
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 702
EP  - 728
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a32/
LA  - ru
ID  - SEMR_2024_21_2_a32
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A K. K. Loginov
%T Numerical modeling of the epidemic process taking into account time- and place-local contacts of individuals
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 702-728
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a32/
%G ru
%F SEMR_2024_21_2_a32
N. V. Pertsev; K. K. Loginov. Numerical modeling of the epidemic process taking into account time- and place-local contacts of individuals. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 702-728. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a32/

[1] K.L. Cooke, P. van den Driessche, “Analysis of an SEIRS epidemic model with two delays”, J. Math. Biol., 35:2 (1996), 240–260 | DOI | MR | Zbl

[2] E. Beretta, T. Hara, W. Ma, Y. Takeuchi, “Global asymptotic stability of an SIR epidemic model with distributed time delay”, Nonlinear Anal., Theory Methods Appl., 47:6 (2001), 4107–4115 | DOI | MR | Zbl

[3] M.L. Taylor, T.W. Carr, “An SIR epidemic model with partial temporary immunity modeled with delay”, J. Math. Biol., 59:6 (2009), 841–880 | DOI | MR | Zbl

[4] G. Huang, Y. Takeuchi, “Global analysis on delay epidemiological dynamic models with nonlinear incidence”, J. Math. Biol., 63:1 (2011), 125–139 | DOI | MR | Zbl

[5] N.V. Pertsev, B.Yu. Pichugin, A.N. Pichugina, “Analysis of the asymptotic behavior solutions of some models of epidemic processes”, Math. Biol. Bioinf., 8:1 (2013), 21–48 | DOI

[6] Y. Yuan, J. Bélair, “Threshold dynamics in an SEIRS model with latency and temporary immunity”, J. Math. Biol., 69:4 (2014), 875–904 | DOI | MR | Zbl

[7] M.V. Barbarossa, G. Röst, “Immuno-epidemiology of a population structured by immune status: a mathematical study of waning immunity and immune system boosting”, J. Math. Biol., 71:6-7 (2015), 1737–1770 | DOI | MR | Zbl

[8] D. Okuonghae, “A note on some qualitative properties of a tuberculosis differential equation model with a time delay”, Differ. Equ. Dyn. Syst., 23:2 (2015), 181–194 | DOI | MR | Zbl

[9] N.V. Pertsev, K.K. Loginov, V.A. Topchii, “Analysis of an epidemic mathematical model based on delay differential equations”, J. Appl. Ind. Math., 14:2 (2020), 396–406 | DOI | MR | Zbl

[10] O.I. Krivorot'ko, S.I. Kabanikhin, N.Y. Zyat'kov et al., “Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk region”, Numer. Analys. Appl., 13 (2020), 332–348 | DOI | MR

[11] U. Nguemdjo, F. Meno, A. Dongfack, B. Ventelou, “Simulating the progression of the COVID-19 disease in Cameroon using SIR models”, PLoS ONE, 15:8 (2020), e0237832 | DOI

[12] S.P. Levashkin, S.N. Agapov, O.I. Zakharova et al., “Study of SEIRD adaptive-compartmental model of COVID-19 epidemic spread in Russian Federation using optimization methods”, Math. Biol. Bioinf., 16:1 (2021), 136–151 | DOI

[13] S.I. Vinitsky, A.A. Gusev, V.L. Derbov et al., “Reduced SIR model of COVID-19 pandemic”, Comput. Math. Math. Phys., 61:3 (2021), 376–387 | DOI | MR | Zbl

[14] A. Boranbaev, N. Obrosova, A. Shananin, “Nonlinear input-output balance and young duality: analysis of COVID-19 macroeconomic impact on Kazakhstan”, Sib. Èlectron. Mat. Izv., 19:2 (2022), 835–851 http://semr.math.nsc.ru/v19/n2/p835-851.pdf | MR

[15] O.I. Krivorotko, S.I. Kabanikhin, “On mathematical models of COVID-19 pandemic”, Sib. Èlectron. Mat. Izv., 20:2 (2023), 1211–1268 http://semr.math.nsc.ru/v20/n2/p1211-1268.pdf | MR | Zbl

[16] N.V. Pertsev, “Global solvability and estimates of solutions to the Cauchy problem for the retarded functional differential equations that are used to model living systems”, Sib. Math. J., 59:1 (2018), 113–125 | DOI | MR | Zbl

[17] L.E. El'sgol'ts, S.B. Norkin, Introduction to the theory of differential equations with deviating argument, Nauka, M., 1971 | MR | Zbl

[18] F.R. Gantmakher, Matrix theory, Nauka, M., 1966 | MR | Zbl

[19] N.V. Pertsev, “Stability of linear delay differential equations arising in models of living systems”, Sib. Adv. Math., 30:1 (2020), 43–54 | DOI | MR

[20] A.Y. Aleksandrov, “Construction of the Lyapunov-Krasovskii functionals for some classes of positive delay systems”, Sib. Math. J., 59:5 (2018), 753–762 | DOI | MR | Zbl

[21] G.I. Marchuk, Mathematical models in immunology. Computational methods and experiments, Nauka, M., 1991 | MR | Zbl

[22] G.A. Bocharov, G.I. Marchuk, “Applied problems of mathematical modeling in immunology”, Comput. Math. Math. Phys., 40:12 (2000), 1830–1844 | MR | Zbl